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ABSTRACT

A central focus of computational biology is to organize and make use of vast

stores of molecular sequence data. Two of the most studied and fundamental

problems in the field are sequence alignment and phylogeny inference. The problem

of multiple sequence alignment is to take a set of DNA, RNA, or protein sequences

and identify related segments of these sequences. Perhaps the most common use

of alignments of multiple sequences is as input for methods designed to infer

a phylogeny, or tree describing the evolutionary history of the sequences. The

two problems are circularly related: standard phylogeny inference methods take

a multiple sequence alignment as input, while computation of a rudimentary

phylogeny is a step in the standard multiple sequence alignment method.

Efficient computation of high-quality alignments, and of high-quality phyloge-

nies based on those alignments, are both open problems in the field of computational

biology. The first part of the dissertation gives details of my efforts to identify a

best-of-breed method for each stage of the standard form-and-polish heuristic for

aligning multiple sequences; the result of these efforts is a tool, called Opal, that

achieves state-of-the-art 84.7% accuracy on the BAliBASE alignment benchmark.

The second part of the dissertation describes a new algorithm that dramatically

increases the speed and scalability of a common method for phylogeny inference

called neighbor-joining; this algorithm is implemented in a new tool, called NINJA,

which is more than an order of magnitude faster than a very fast implementation of

the canonical algorithm, for example building a tree on 218,000 sequences in under

6 days using a single processor computer.
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CHAPTER 1

INTRODUCTION

Molecular sequencing technology has ushered in a new era in biology, one
in which gene function and structure can be predicted based only on sequence
(though confirmation of predictions still depends on experimentation), and in which
historical relationship of sequences and species can be inferred based on fairly
objective sequence-based methods rather than subjective classification schemes.

The task of sequence alignment is to take a set of molecular sequences (DNA,
RNA, or protein) and identify regions with functional, structural, or evolutionary
relationship. This is typically done by organizing the sequences into a matrix in
which each row corresponds to one sequence, and the sequences are spread out so
that related residues (amino acids or nucleotides) share a column. Alignments can
be used, for example, to:

• identify conserved regions (conservation suggests that the region encodes some
function);

• estimate molecular structure (much better predictions of structure are
possible from a high-quality alignment of multiple sequences than from a
single sequence);

• find signals of natural selection (for example based on Ka/Ks ratio, which
may indicate positive or purifying selection [57]);

• make statements of evolutionary ancestry, where the statement may be
something like “sequence A shares common ancestry with sequence B”, or
“the phylogeny (family tree) of this set of sequences is . . . ”.

Take as an example a single long-dead organism that is ancestor to a collection
of extant organisms, and consider a single gene in that organism. If we could
track the mutations that were endured by copies of that gene in the course of the
tree-like process of descent leading to present-day sequences, we would find that
substitutions, insertions, and deletions occurring in organisms at various historical
points would be passed on to their descendants. This evolutionary process can
be seen to induce a multiple sequence alignment in which each column contains
characters that share descent based on (perhaps faulty) replication from the same
ancestral character, while positions in sequences are shifted one way or another
to account for historical insertions and deletions (see Figure 1.1). Of course,
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Figure 1.1: Descent with modification, in the form of substitutions, insertions, and
deletions. The evolutionary history of the sequences induces an alignment of the
extant sequences.

such a history is generally unknowable, but is the aim of much of computational
biology: recovering the alignment without knowing the ancestral sequences or true
phylogeny, and recovering the true phylogeny without knowing the true alignment.

This dissertation covers these two closely related topics, exploring a wide range
of methods applied to aligning multiple sequences, as well as an approach that
dramatically increases the speed and scalability of a common method for phylogeny
inference. The majority of methods applied to phylogeny and alignment treat the
two problems as essentially independent. Phylogeny methods typically take a single
alignment as input, and treat it as if it were a true statement of homology of
characters, despite clear evidence that uncertainty in alignment correlates with
problematic tree inference [85]. Meanwhile, the standard method of aligning
multiple sequences makes use of a quickly estimated phylogeny (guide tree) in an
internal step, despite concerns that choice of guide tree may bias analyses made
based on the alignment [70]. Though groundbreaking progress has been made
in the area of simultaneously inferring both alignment and phylogeny [91], the
computational complexity of such methods is such that only several sequences can
be compared. In the genomics era, in which alignments of hundreds, or even tens of
thousands, of sequences may be the subject of analysis, it is still of value to consider
alignment and phylogeny as stages in a process, as is done in this dissertation.
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1.1. Overview

The remainder of this chapter will provide a very basic introduction to the topics
of sequence alignment and phylogeny inference. The following chapters are broken
into two parts.

Part 1 (Chapters 2 through 4) will relate to the problem of multiple sequence
alignment. Chapter 2 gives an overview of the standard multiple sequence alignment
framework, describing the stages used in what we call the form-and-polish method.
It also presents an investigation of new and established methods at each stage of the
form-and-polish method, and identifies best-of-breed methods for each. Chapter 3
gives details on a promising new method for one of the stages, involving the
weighting of sequence pairs used to overcome the dominance by over-represented
groups of the standard sum-of-pairs score. Finally, Chapter 4 provides in-depth
discussion of a new method for using alignment consistency to avoid errors that are
a common by-product of the standard method of alignment construction.

Part 2 (Chapters 5 through 7) relates to a new algorithm that dramatically
increases the speed and scalability of a common method for phylogeny inference,
called neighbor-joining. Chapter 5 describes the canonical neighbor-joining
algorithm, and places it in context of related work. Chapter 6 give details of
the new algorithm, which reduces run time via a two-staged filtering approach,
and overcomes memory limitations by employing data structures that are external-
memory-efficient. Chapter 7 presents experimental results supporting the success
of this new algorithm, highlighted by the result of producing a tree for an input of
218,000 sequences in under 6 days on a single computer.

Finally, we conclude with summary remarks and possible future directions of
research.

1.2. Introduction to sequence alignment

When aligning sequences, it is common to consider three kinds of mutation:
substitution (in which one nucleotide is replaced with another, perhaps as the result
of a faulty replication), insertion (in which a stretch of characters is added into
a sequence), and deletion (in which a stretch of characters is removed). Other
mutations, such as reversal or recombination, are much more rare, require more
complex representative techniques, and add computational complexity, and are thus
not considered in standard sequence alignment methods. Mutations are subject to
selection, with the result that they are relatively less likely to be observed in regions
of functional importance, and of the those that are observed in functional regions,
most have minimal functional impact, for example replacing one amino acid with
another one bearing similar biochemical properties.

The task of sequence alignment is to take a set of molecular sequences and
identify related regions. A sequence alignment is typically represented as a matrix,
in which each row corresponds to one sequence, and the characters of each sequence
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are shifted left and right so that related residues share a column. Characters in a
column need not be identical, just homologous (i.e. the result of a substitution).
The way sequences are spread out is by placing one or more spacer characters
(typically ‘-’, which is effectively the null character) between characters in the
sequence, as in the induced alignment in Figure 1.1. These spacer characters are
often called gap characters. A maximal run of consecutive spacer characters in a
row is called a gap (alternatively an indel), and is presumed to be the result of a
single mutational event, either an insertion or deletion (or possibly an artifact of
incomplete sequencing, in the case of terminal gaps).

Finding a biologically meaningful alignment depends on assigning scores to
substitutions, and costs to gaps. In protein sequence alignment, the substitution
scores typically come from a 20×20 matrix (e.g. BLOSUM [51] or VTML [79]),
in which the score of a substitution from residue a to residue b may be viewed as
the logarithm of the odds ratio (σ(a, b) = log p(ab)

p(a)p(b)
), based on frequencies in an

alignment database of observed alignments (where p(a) is the observed frequency
of character a among all sequences in the database, and p(ab) is the frequency of
observing an a aligned with a b in the database). In these matrices, identities have
highest (positive) score, while substitutions between amino acids with very different
biochemical properties have lowest (and negative) score. The substitution matrix
for nucleotides is a simpler 4×4 matrix. Gaps are typically assigned an affine cost,
in which a gap incurs a length-dependent cost, with cost of λ for each character in
the gap, and a per-gap cost γ (so the total cost of a gap of length ` is γ + `λ). In
this scoring scheme, the goal is to line characters up into an alignment A so as to
maximize the sum of the induced substitution scores, minus the induced gap costs.
This is the scoring scheme used in most related work.

It is a trivial matter to convert substitution scores to costs, so that identities
have low cost and substitutions have high cost, thus turning the task into an
equivalent cost-minimization problem. This is the scoring scheme used in this
work, so that the cost of a pairwise alignment is

cost(A) := cγ + `λ+
∑
a→b

σ(a, b), (1.1)

where the number of gaps is c, the total length of those gaps is `, and the summation
is over the cost of all substitutions (a ∼ b). The matter of maximizing scores or
minimizing costs is mostly a semantic issue, but one that informs the terms used
in describing other tools (score) and our models (cost).

The technique of dynamic programming can be used to find a pairwise alignment
with optimal cost. The key to using this technique is the observation that an
optimal alignment of a pair of prefixes ends in a column (involving either a
substitution or a gap), and if that final column is removed, the remaining alignment
must be an optimal alignment of the shortened prefixes. Under the condition that
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Figure 1.2: Path in a pairwise alignment dynamic programming table. A diagonal
edge leading into cell (i, j) corresponds to a substitution column containing ai and
bj. A vertical edge leading into cell (i, j) corresponds to a column containing ai in
a gap between bj and bj+1. A horizontal edge leading into cell (i, j) corresponds to
a column containing bj in a gap between ai and ai+1.

the per-gap cost γ is 0, this leads to the following recurrence for computing the
optimal cost, C(i, j) of an alignment of prefixes (a1 . . . ai) and (b1 . . . bj) of sequences
A and B:

C(i, j) = min


C(i− 1, j − 1) + σ(ai, bj),

C(i− 1, j) + λ,

C(i, j − 1) + λ

 . (1.2)

(The recurrence in the case γ > 0 is a bit more complex, requiring that optimal
costs must be kept at each cell for each of the 3 possible columns that might end
a prefix alignment. Details are unnecessary for the purposes of this introduction,
but can be found in [50].)

The optimal cost of aligning the full sequences A and B, of length m and n
respectively, is then the value C(m,n). This value may be found by filling in an
m × n table, where the ith row corresponds to the ith position of A, and the jth

column to the jth position of B, so that the cost at a cell (i, j) corresponds to the
cost of aligning prefixes (a1 . . . ai) and (b1 . . . bj). This dynamic programming table
is filled out in row-major order (row by row, from upper left to lower right), so that
the three values required by the recurrence in equation 1.2 are always available
when the value at a new cell is computed. Thus, a single pass through the table is
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sufficient to find the cost of the optimal alignment. Since constant time is required
to compare the 3 values at each cell, this gives a O(nm) algorithm for finding the
optimal cost. An alignment corresponds to a path through the alignment graph,
as in Figure 1.2. A path (and corresponding alignment) with the optimal cost can
be found by the standard dynamic programming method of backtracking through
this table [50].

Generalization of this approach to finding good alignments of multiple sequences
requires generalization of the scoring method. In principle, if we knew the phylogeny
relating sequences, and the ancestral sequences labelling internal nodes, it would be
reasonable to seek an alignment of extant and ancestral sequences that minimize
the sum of pairwise alignment costs over all edges in the phylogeny. However,
the phylogeny and internal labellings are in general unknown. Even given a fixed
phylogeny, the problem of labeling internal nodes so as to produce a minimal cost
summing over all edges (often called Tree alignment [96]) is NP complete [114]. For
this reason, the standard practice is to optimize the sum of the alignment costs over
all pairwise alignments induced by the multiple alignment. This scoring scheme has
the odd trait of effectively treating each sequence as if it evolved from all the others,
but has proven to be useful.

With this sum-of-pairs scoring scheme in place, the dynamic programming
method for two-sequence alignment can be generalized to aligning multiple
sequences by filling in a k-dimensional table for k sequences. The exponential size
of this table makes exact alignment infeasible for more than several sequences, even
with clever methods for limiting the visited space in that table [71, 44], so heuristics
are used in practice. An overview of the standard heuristic for aligning multiple
sequences, which we call the form-and-polish approach, are given in Chapter 2,
with detailed investigation of the stages of that method described in Chapters 2
through 4.

1.3. Introduction to phylogeny inference

The diversity of life, and the DNA that encodes its function, arose through a
branching pattern of evolution: a copy of the DNA of an organism is passed on
to that organism’s offspring, possibly with mutation. Over time, this descent with
modification [21] can be seen to induce a tree-like relationship on a family of present-
day sequences.

The task of molecular phylogenetic inference is to take as input a set of
sequences, usually already aligned, and create a tree that recovers their ancestral
history. This tree may be what is called a gene tree, which defines the ancestral
history of descendants of a single gene (or perhaps a concatenated set of genes), or
a species tree, which defines the history of the species containing those genes. Due
to incomplete lineage sorting [73, 74], which may cause incongruence between the
trees of different genes sequenced from the same individuals, these may not agree.
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In this work, discussion of phylogeny inference relates to gene tree construction.
Such a tree is valuable both in its own right as a statement of the relationship of

entities, and also as a framework for understanding a wide range biological processes
(e.g. rates of evolution, selective pressures) and for addressing biodiversity issues.

Inferred trees have two components: the topology (branching order) and edge
lengths. Trees are typically binary, and most commonly-used inference methods
produce unrooted trees. A standard method of establishing a root for an unrooted
tree is to include a known outgroup (a sequence that is known not to break the
monophyly of the remaining sequences): the root is then placed along the edge
connecting that group to the rest of the tree.

A variety of methods are applied to the problem of phylogeny inference, with the
notable ones including Parsimony [33], Maximum-likelihood [34], Bayesian [117, 56],
and distance based methods Minimum Evolution [94, 22] and Neighbor-joining [95].

The first three in this list all assign a value to a tree that depends on possible
(unknown) ancestral sequences, then seek trees with optimal value. The number
of possible topologies grows super-exponentially in the number of sequences [35],
leading parsimony and maximum-likelihood (ML) to use local-search heuristics to
try to find good trees, while Bayesian phylogeny inference employs a Markov-
Chain Monte-Carlo approach to sample from the probability landscape. In all three
methods, positions are usually assumed to be independent, and gap characters are
treated either as an extra character or as missing data. Parsimony aims to find a
tree that minimizes the number of changes over the tree that are required to attain
the observed sequences; an efficient dynamic programming approach (linear in the
size of the input alignment) allows computation of optimal labellings for internal
nodes for a fixed tree. ML seeks to find a tree that has highest likelihood under a
probabilistic model of sequence evolution; the likelihood for a fixed tree is computed
by marginalizing over all possible internal node labellings, and is computed with
a linear time dynamic-programming algorithm. Bayesian inference is also model
based, but samples from the space of possible trees, rather than seeking a single
peak in the probability space.

Distance-based methods do not consider internal node labels. Rather, they
begin by computing distances between all pairs of sequences, and build trees based
only on these pairwise distances. Under the minimum evolution (ME) framework,
edge lengths for a fixed topology are those that minimize the sum of the squares of
the differences between the input pairwise distances and those induced by the tree’s
edge lengths. The minimum-evolution tree is the tree with topology minimizing the
sum of these edge lengths, and ME methods use local search heuristics to try to
find a tree near this minimum. Neighbor-joining (NJ) is a greedy heuristic for
finding the balanced minimum evolution tree [40], is proven statistically consistent
(guarantees the correct tree given a sufficiently long alignment), and is guaranteed
to produce the correct tree even when the input pairwise distances are somewhat
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noisy (see Chapter 5 for details).
The largest published tree inferred by the Parsimony method contains 73,060

taxa [42], while ML has currently achieved limits of around 50,000 sequences in
testing (pers. comm. Mike Sanderson, Karen Cranston). Both methods require
weeks of computation time to build such trees. Bayesian inference can only handle
inputs on the order of hundreds of sequences. There is little hope that these methods
will scale to the point of rapidly building trees for inputs of more than 200,000
sequences in the near future. Since trees of this size are now possible given the
available sequence data, methods that can scale up are desirable. The canonical
NJ algorithm is faster than Parsimony or ML, but its O(k3) run time and O(k2)
space requirements for k sequences, make it unfit for such large inputs. In Part 2, we
describe a new algorithm for computing a neighbor-joining tree that improves over
the run time of the canonical algorithm by more than an order of magnitude. This
new method reduces run time by using a filtering mechanism to dramatically reduce
the number of computations done for each iteration of the tree formation process,
and uses external-memory efficient data structures to overcome space constraints.
As an example, it produces a tree with 50,000 sequences in about 9 hours using a
single processor on a system with 4GB of RAM, and a tree with 218,000 sequences
in fewer than 6 days on a similar system with 12 GB RAM.
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PART 1 ACCURATE MULTIPLE ALIGNMENT WITH THE

FORM-AND-POLISH STRATEGY
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CHAPTER 2

BEST-OF-BREED METHODS FOR FORM-AND-POLISH ALIGNMENT

All widely-used tools for multiple sequence alignment at essence seek an
alignment that minimizes the sum-of-pairs cost : the weighted sum of the costs
of all pairwise alignments induced by the multiple alignment. Optimal multiple
alignment with sum-of-pairs scoring is NP-complete [114] which motivates the use
of good heuristics.

Most commonly-used tools use a heuristic called progressive alignment [36]
which has two steps: (1) construct a binary merge tree whose leaves are the
input sequences and whose internal nodes arrange the sequences into groups, and
(2) merge these groups leaf-to-root over the tree by combining the alignments at
the two children of a node into one alignment at their parent to form successively
larger alignments at internal nodes. When merging the groups at the two children
of a node into one group at their parent, the two sets of sequences in the groups are
usually combined by aligning alignments [45, 63] or aligning profiles that compactly
represent alignments [46, 64]. When this merging process reaches the root, the last
pair of clusters is merged at the root of the tree, and it has formed an alignment
of all the input sequences.

This hierarchical approach is greedy: the alignment between two sequences in a
group is not altered when that group is merged with another group. Consequently,
errors made in early merges remain in the final alignment, and may lead to further
misalignment in later merges. One approach to correcting such errors is to apply a
second stage we call polishing [9], which refines the alignment by repeatedly splitting
its sequences into subsets and realigning their induced subalignments. Another
strategy is to reduce early errors using an approach called consistency [84, 25],
which tries to avoid making such errors in the first place. Consistency approaches
assign position-specific substitution scores for a pair of sequences A and B and a
pair of positions i and j that depend on the support for the substitution between i
and j from the pairwise alignments of sequences A and B to all other sequences C.

The combination of all these steps makes up the core of what we call the form-
and-polish strategy for multiple alignment. In total, this strategy consists of seven
stages:

1. Choose alignment parameters.

2. Estimate distances between pairs of sequences.

3. Construct a merge tree.
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4. Compute weights for sequence pairs.

5. Compute consistency-modified scores.

6. Merge alignments over the merge tree from stage 3.

7. Polish the alignment formed at the root of the merge tree in stage 6.

Form-and-polish alignment methods make use of these stages, with stages 1,
2, 3, and 6 being obligatory, while stages 4, 5, and 7 are optional. The stages
will be described in detail below. The order of presentation will differ to simplify
exposition.

2.1. Survey of methods and tools

Current tools use a profusion of methods for each stage. The most widely-used
multiple alignment tool, ClustalW [110], relies on a complex scoring scheme in
which substitution scores and gap penalties are adjusted according to features of
the aligned sequences, including divergence, length, hydrophobicity of amino acids,
and proximity of neighboring gaps.

PRRP/N [48] improved accuracy using polishing, in which an alignment is
repeatedly split into subalignments, which are then realigned.

T-Coffee [83] and its predecessor Coffee [84] introduced alignment consistency,
with resulting increase in accuracy. T-Coffee assigns position-specific substitution
scores based on a mixture of support provided by optimal global pairwise alignments
and a small set of high scoring local pairwise alignments.

Early versions of MAFFT [60] substantially increased alignment speed without
sacrificing ClustalW-like accuracy through a host of ideas including scoring system
modifications, use of the Fast Fourier Transform to speed up profile alignment and a
two-stage strategy for constructing an alignment that first builds a draft alignment
using a merge tree based on distance estimates from k-mer frequencies, and then
obtains a pre-polished alignment based on a merge tree built using distances derived
from the pairwise alignments induced by the draft alignment.

Muscle [29] further improved speed with a variety of algorithm-engineering
approaches, and matched T-Coffee’s accuracy by employing reduced terminal gap
costs and a measure called log-expectation to score alignments of profiles.

ProbCons [25] introduced probabilistic consistency, which assigns position-
specific substitution scores based on a measure of expected accuracy derived from
a hidden Markov model using a three-way consistency transform. It also offers a
column reliability score that estimates the likelihood that each column represents
a correct alignment of residues.

Recent versions of MAFFT [59] incorporate a heuristic for T-Coffee-like consis-
tency, resulting in a substantial improvement in accuracy. The results are slower
than the fastest version of MAFFT, but still quite fast.
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Details of the consistency methods of T-Coffee, MAFFT, and ProbCons are
provided in Chapter 4.

2.2. Overview

It can be difficult to determine which methods are contributing to the accuracy of
these various alignment tools, and should be in a best-of-breed tool.

In this chapter, we carefully study the impact of the standard methods for
each stage of the form-and-polish method of multiple sequence alignment, and
offer several new methods that substantially improve accuracy. The greatest
gains in accuracy come from two simple new ideas: (i) estimating distances
between sequences for merge tree construction by normalized alignment costs, and
(ii) polishing the final alignment using 3-partitions of the input sequences induced
by cutting pairs of edges in the merge tree.

By combining the best methods for each of the stages of the form-and-polish
strategy, we obtain a new tool, which we call Opal, whose accuracy matches the
state-of-the-art as measured on the standard benchmark datasets.

In the next section, we describe our experimental methods. In Section 2.4,
we study methods for constructing the merge tree. Section 2.5 considers methods
for merging alignments. Section 2.6 assesses the effect of weighted sum-of-pairs.
Section 2.7 explores methods for polishing alignments. Section 2.8 inspects the
value of alignment consistency. Section 2.9 examines the impact of parameter
choice, and finally Section 2.10 compares the combined approach to current tools.

It is reasonable to ask if the order in which stages are addressed might impact
the results. We considered many combinations of the methods for each stage, and
the best-of-breed choices are consistent under any ordering. The only impact of
the order appears to be on the scale of improvements attributed to a method. For
example, if polishing were presented earlier, its gains would be larger, while the
gains seen in other methods would be smaller.

2.3. Methodology

The standard practice for evaluating multiple alignment tools is to use benchmark
datasets of reference alignments that are usually based on structural alignment of
proteins. When comparing methods for a stage, and comparing alignment tools,
we evaluate accuracy by measuring the recovery of reference alignments from three
standard suites of protein alignment benchmarks: BAliBASE3.0 [109], SABmark1.65
[113], and PALI2.5 [7]. These suites, which are used by many comparative studies,
of course represent only a sample of the types of inputs biologists face.

BAliBASE is a collection of 218 reference alignments based on structural
alignments with manually-arranged gaps, exhibiting a variety of phylogenetic and
structural characteristics. We limited our tests to the 163 alignments with no more
than 40 sequences, as our focus is measuring accuracy and not speed.
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The SABmark benchmark contains 627 alignments, each containing at most 25
sequences, that cover the entire known fold space found in the SCOP[80] classification
of protein families. Each benchmark is a collection of pairwise structural alignments
that are not necessarily consistent with one multiple alignment.

PALI contains 1655 alignments of all SCOP families constructed by structural
multiple alignment without hand curation. We used a subset of 102 alignments
consisting of all reference alignments with at least 7 sequences that have nontrivial
gap structure.

In our experiments the measure of accuracy is mainly the so-called SPS score [6]:
the percentage of pairs of aligned positions from the reference alignment that were
correctly recovered by the computed alignment. In some cases we also report the
so-called TC score [6]: the percentage of columns from the reference alignment that
were completely recovered; this score is appropriate for BAliBASE and PALI, but
not SABmark, since there is no column to be recovered (only possibly inconsistent
pairwise alignments).

For BAliBASE and PALI, both scores are measured on their core blocks : those
columns in the reference alignment that are deemed reliable by the benchmark
(typically through strong support from a structural alignment). SABmark does not
provide core blocks, so accuracy is measured against all columns of the benchmark
alignment pairs, regardless of their true reliability. This fact partially accounts
for the much lower recovery rates seen for SABmark than for BAliBASE and PALI,
though the divergent nature of the SABmark alignments is certainly responsible for
much of the difference.

We use the above suites of benchmarks in experiments to determine the best
method for each of the eight identified stages of the form-and-polish strategy for
multiple alignment. While this may appear to ignore interactions between methods
for different stages, results not shown here show the best method for a given stage
is independent of the choices at other stages. The best method is also generally
independent of which suite of benchmarks is considered.

2.4. Merge tree

Constructing a merge tree involves (1) grouping sequences hierarchically, based on
(2) a measure of distance between sequences. We study these two aspects in turn.

2.4.1. Grouping sequences

Progressive alignment tools construct the merge tree using one of a number of
similar sequential clustering algorithms, in which the tree is built in a stepwise
manner. In the general step, a distance (see Section 2.4.2) is known for each pair
of sequence clusters, and the two closest clusters are merged into a new cluster,
which defines an internal node of a binary tree. For a cluster ab that is the merge
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Table 2.1: Clustering methods for constructing the merge tree.

Method Cluster ab minimization criterion Updated distance from ab to c

NJ (dab −
∑

c(dac + dbc))/(n− 2) (dac + dbc − dab)/2

UPGMA dab (dac + dbc)/2

MST dab min{dac, dbc}

MST+UPGMA dab

αmin{dac, dbc}+
(1−α)(dac+dbc)/2

DAD dab Cost of aligning ab to c

of clusters a and b, new distances dab|c to all other clusters c are calculated as a
simple combination of dac, dbc, and possibly dab. Merging continues until one group
remains, which is the root of the tree. The tree may be rerooted at a different
node, for instance to balance root-to-leaf path lengths, or based on integration of
a known outgroup.

Beginning with distance da|b (see Section 2.4.2) between each pair a,b, the various
methods discussed choose the pair to merge, then calculate a distance for the new
cluster to all others. We study five clustering schemes, one new, as shown in
Table 2.1.

Neighbor-joining Neighbor-joining [95, 105] is the method used by ClustalW

and T-Coffee. It is a heuristic for construction of a minimum evolution tree [40],
and is generally regarded as among the best of the fast distance-based methods at
producing the true evolutionary tree for the sequences.

Let G be the current set of groups during the merging process, and da|b be the
current distance between a pair a, b of groups. neighbor-joining merges the groups a
and b that minimize

(|G| − 2) da|b −
∑

c∈G−{a,b}

(
da|c + db|c

)
. (2.1)

The new distance dab|c between the merged group ab and all other groups c is

dab|c :=
da|c + db|c − da|b

2
. (2.2)

The canonical algorithm for neighbor-joining takes O(k3) time for k sequences.
See Part 2 for significant discussion of this method.
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UPGMA and MST The unweighted-pair group-method with arithmetic-mean or
UPGMA [101], and minimum spanning tree or MST [20], are simpler approaches that
run in O(k2) time. Both merge the pair a, b of groups with minimum distance da|b,
but differ in how they define the distance dab|c from the merged group ab to all other
groups c. UPGMA sets dab|c to the average 1

2
(da|c+db|c), while MST uses min{da|c, db|c}.

We also considered the mixture UPGMA + MST used by MAFFT, which for 0≤α≤1,
sets dab|c to the convex combination

dab|c = α min
{
da|c, db|c

}
+ (1−α)

1

2

(
da|c + db|c

)
. (2.3)

DAD A shortcoming of the above methods is that distances are derived from
sequences only at initialization. When group ab is formed, the new distances dab|c
are calculated from original sequence distances, which ignores the constraints on
sequence pairs across groups ab and c imposed by the alignments for these groups.

We evaluated several new methods that take such constraints into account. The
best of these, which we call dynamic alignment distance or DAD, computes dab|c by
aligning the current alignments for ab and c to obtain an alignment A for group abc,
and then taking for dab|c the minimum of the distances measured on the pairwise
alignments in A induced by sequence pairs across groups ab and c (analogous
to MST). The distance measure on pairwise alignments can be any of those from
Section 2.4.2.

We also considered variants that use the average of the distances of the induced
pairwise alignments between ab and c (analogous to UPGMA), and that add in the
average distances between abc and all other groups d, but the above method
performed the best.

DAD does not perform as well as the seemingly less-informed methods neighbor-
joining, UPGMA, and MST. While there is more information in the aligned sequences,
alignments against large groups are more constrained than those against small
groups, so larger groups tend to have higher distances. This causes smaller groups
to be preferentially merged next, which leads to a balanced merge tree even when
this is undesirable.

Comparison Table 2.2 shows a comparison of the accuracy of these methods
on three suites of benchmarks in terms of their SPS score. As our baseline for
the other stages, we measure the initial sequence distances using percent identity
over a compressed alphabet (Section 2.4.2), merge alignments using pessimistic gap
counts (Section 2.5), and use unweighted sum-of-pairs (Section 2.6), no polishing
(Section 2.7), no consistency (Section 2.8), and default parameters (Section 2.9).
For UPGMA + MST we use α=0.9, as in MAFFT. The best accuracies are in bold.

The multiple alignment literature [29, 25] suggests that using a merge tree that
is similar to the correct evolutionary tree is less important for alignment accuracy
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Table 2.2: Comparison of clustering methods.

Tree method BAliBASE SABmark PALI average

MST 79.4 44.1 79.8 67.8

UPGMA + MST 79.2 44.0 80.2 67.8

UPGMA 78.0 42.7 80.5 67.1

neighbor-joining 77.4 42.1 77.2 65.6

DAD 78.2 43.5 73.0 64.9

than using a tree that groups similar sequences first. Our results agree with this
suggestion: generally the methods based on minimum spanning trees outperform
the others. For the merge tree method in the rest of the chapter, we chose the
simpler method MST.

2.4.2. Measuring distances

The standard measure of distance between two sequences is based on percent
identity : the percentage of matched positions in an optimal pairwise alignment
that are identities. (The actual distance used is the complement of percent
identity.) Many tools modify percent identity by the Kimura correction for multiple
substitutions at a locus [65], and measure it over a compressed alphabet that groups
amino acids with similar characteristics into equivalence classes, which we call
compressed identity. MAFFT and Muscle compute a draft alignment from distances
based on k-mer frequencies on the way to their initial alignment based on percent
identity.

Percent identity is a coarse measure of similarity, while alignment cost is a more
refined measure that can be obtained with no overhead. We therefore tested a new
distance measure, which we call normalized alignment cost, that simply normalizes
the cost of an optimal pairwise alignment by dividing by the average length of
the two sequences (where alignment cost uses affine gap penalties, as discussed in
Section 2.5). In a sense this generalizes percent identity and compressed identity to
the full spectrum of substitutions while also taking into account gaps. The distance
measure used in ProbCons, expected accuracy, is similar in concept to normalized
cost. It cannot be tested here, because it depends on the hidden Markov model
foundation of ProbCons.

Comparison Table 2.3 shows a comparison the accuracy of these three distance
methods. We use an MST merge tree, pessimistic gap counts, no weighting, no
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Table 2.3: Comparison of distance methods.

Distance method BAliBASE SABmark PALI average

normalized cost 81.6 48.2 83.0 70.9

compressed identity 79.4 44.1 79.8 67.8

percent identity 78.5 43.5 79.9 67.3

polishing, no consistency, and default parameters. Identity measures have Kimura
correction.

Normalized costs give a striking boost in accuracy, that persists even after
polishing (not shown). Results in the rest of the chapter depend on normalized
costs as the distance measure.

2.5. Merging alignments

Merging two multiple alignments of disjoint groups of sequences into one alignment
of all the sequences, which has been called group-to-group alignment [45, 46] and
aligning alignments [64, 63], is central to both forming an initial multiple alignment
and polishing a final alignment.

When forming an initial multiple alignment, the merge tree T is processed from
the leaves to the root. Each leaf is labeled by an input sequence, which may be
viewed as a trivial alignment. As each internal node v is processed, the alignmentsA
and B labeling the children of v are combined into one alignment C of all the
sequences at the leaves of the subtree for v. During the polishing stage, the final
alignment is repeatedly split into subalignments A and B that are recombined into
an updated alignment C. Clearly the quality of the final alignment strongly depends
on how subalignments are merged in both stages.

When merging alignments A and B to form C, we take as our objective to
optimize the sum-of-pairs score [17] of alignment C, which is the sum of the
scores of all induced pairwise alignments in C. This is the objective used in
all commonly-used tools today. The sum-of-pairs score may be weighted, as
discussed in Section 2.6. When merging A and B to form C, the columns within
subalignments A and B are preserved within C, as pictured in Figure 2.1.

Computing an optimal C given A and B using sum-of-pairs scoring has
been called the problem of aligning alignments [64], and was first considered by
Gotoh [45]. Scores of the alignments are usually evaluated using affine gap penalties,
where a gap of length ` in a pairwise alignment has cost γ + `λ, for constants γ
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Figure 3.2 Aligning alignments is a merging of two alignments where the columns of one
alignment are aligned as units with the columns of the other, resulting in a new multiple
alignment.

optimal multiple alignments under this objective is NP-hard even without considering

gaps [50, 42, 71, 72], and has been demonstrated as practical only for a limited number

of sequences.

3.1.2 Progressive alignment

A widely used alternative to finding optimal multiple alignments is progressive align-

ment [19], a heuristic where a multiple alignment is progressively built following a binary

merge-tree in bottom-up fashion. Leaves of the merge-tree are the input sequences and

the root is the output multiple alignment. Internal nodes of the merge-tree are inter-

mediate multiple alignments of the sequences at the leaves of the corresponding subtree,

and are formed by merging their two children (which are either sequences or intermedi-

ate alignments). When two alignments are merged, the columns of each alignment are

treated as units, with the columns of one alignment to be aligned against the columns of

the other (Figure 3.2).

The appeal of progressive alignment is that for an alignment of k sequences, we need

only perform k−1 alignments, each on a pair of sequences (of columns). There is however,

the inevitable trade-off. Notice that the induced pairwise alignments within an alignment

are not changed when it is merged with another alignment. As a result, errors introduced

early in the merging process persist to the final alignment and can adversely affect later

merges. For example when the process begins, the merging is on a pair of sequences

Figure 2.1: Aligning alignments is a merging of two alignments where the columns
of one alignment are aligned as units with the columns of the other, resulting in a
new multiple alignment. (Reproduced with permission from [103])

and λ. (A gap of length ` is a maximal run of either ` insertions or deletions.) The
constants γ and λ are called the gap open and extension penalties, and may have
different values for terminal or internal gaps. When computing an optimal merge C
by dynamic programming, the essential difficulty is in correctly counting the total
number of gaps incurred in the induced pairwise alignments of C.

We study two basic ways of computing the merge C by aligning alignments: using
exact gap counts, which yields a merge that has optimal sum-of-pairs score; and
using pessimistic gap counts, which is a fast heuristic that may yield a suboptimal
merge.

Exact counts Surprisingly, computing an optimal merge C of two alignments A
and B with affine gap penalties is NP-complete [72]. While this shows there
is likely no algorithm that computes an optimal merge and is fast in the worst
case, nevertheless Kececioglu and Starrett developed an exact algorithm [63] that
computes an optimal merge and is remarkably fast in practice. To optimally align
two alignments, each having k sequences and n columns, their algorithm takes
worst-case time O(5kn2). Extensive experiments, however, show empirically that it
runs in O(k2n2) time on biological data [63].

In this study, we compute an optimal merge C with exact gap counts, using an
implementation of the algorithm of [63].

Pessimistic counts Another approach to computing the merge C is to avoid
the difficulty of determining exact gap counts by instead using an approximation
called pessimistic gap counts [64]. Pessimistic counts were introduced under the
name quasi-natural gap costs by Altschul [2]. This approximation overestimates
the true number of gaps by assuming, in cases where the number of gaps started by
a multiple alignment column is not determined by the preceding column, that the
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Table 2.4: Comparison of alignment methods.

Merge method BAliBASE SABmark PALI average

exact 82.4 48.4 84.0 71.6

pessimistic 81.6 48.2 83.0 70.9

number of gaps started attains its largest possible value. The benefit of pessimistic
gap counts is that the merge of two alignments that is best under this estimate
can always be found efficiently: with an alphabet of size |Σ|, computing the best
pessimistic merge of two alignments, each having k sequences and n columns, takes
worst-case time O(n2 · min (|Σ|, k)) with O(nk) preprocessing (see Chapter 8 in
[103]).

Most multiple alignment tools use some version of profile alignment [46, 64, 60,
29], to merge alignments. It is entirely possible that the pessimistic heuristic, which
is also a profile method, is outperforming other profile methods, though we do not
study that here.

Comparison Table 2.4 compares the accuracy (SPS score) of exact and pessimistic
gap counts when merging alignments leaf-to-root on the tree. We use an MST merge
tree with normalized costs, no weighting, no polishing, no consistency, and default
parameters.

Exact gap counts are consistently superior to pessimistic gap counts, though
only slightly. Our experiments (not shown) indicate that exact gap counts continue
to slightly outperform pessimistic counts after polishing. We use exact counts in
the rest of the chapter, but note that the performance of the pessimistic heuristic
is encouraging, and suggests that it is a reasonable choice for inputs so large that
even the surprisingly fast exact-counts algorithm is too slow to use in practice.

2.6. Sequence-pair weights

Sum-of-pairs scoring of multiple alignments is a potentially biased scoring measure:
if the input sequences are not independent but instead over-sample some groups
compared to others, the higher number of pairwise alignments to an over-sampled
group can dominate the alignment score. This greater contribution of an over-
sampled group to the score will tend to drive the multiple alignment toward
improving the pairwise alignments to such groups at the price of worsening the
pairwise alignments to under-sampled groups, thus degrading the overall quality of
the alignment.
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Several schemes have been proposed to correct for this bias by nonuniformly
weighting the pairwise alignment scores in the sum-of-pairs measure. We study
three such schemes. The first is new, and the other two are the schemes most
widely used by current alignment software. Brief descriptions are given here; full
details of the methods are provided in Chapter 3.

All these schemes assign weights to pairs of input sequences on the basis of a
tree T whose leaves correspond to the sequences, and that has edge lengths `e for
all edges e ∈ T . Each scheme assigns a weight wij to a pair i, j of leaves in T that
depends on both the topology of T and its edge lengths. Suppose that in a multiple
alignment A of the sequences, the score of the induced pairwise alignment of the
sequences associated with leaves i and j is sij. The weighted sum-of-pairs score of
alignment A using these weights is ∑

i,j

wij sij . (2.4)

Influence weights Our new method of assigning a weight wij to a pair i, j of
leaves depends on quantifying the influence of one leaf on another. Informally, the
influence of j on i, ω(i, j), is computed by rerooting the tree at i, then assigning
a weight of 1 to i and distributing that weight among the remaining leaves in a
manner that depends on shape of T and edge lengths.

The function ω is not necessarily symmetric, but we can define a symmetric
weight on a pair of leaves by the geometric mean of their influences:

wij :=
√
ω(i, j) ω(j, i) . (2.5)

We call the wij obtained in this way, influence weights.
Influence weights have several nice properties. For k sequences, the weights wij

can be computed in time O(k2), given tree T and its edge lengths, which is optimal.
They also avoid the anomalous behavior exhibited by the other two methods
described below, as discussed in chapter 3.

Covariance weights Perhaps the best-known weights for sum-of-pairs multiple
alignment are those of Altschul et al. [3]. Of the two weighting schemes they suggest,
their second scheme, which they call rationale 2 weights, has the more rigorous basis
and is the one that has been more widely adopted. We call their second scheme,
covariance weights.

Covariance weights depend on the extent to which paths between two different
pairs of sequences share internal edges (their covariance). In principle, they are
computed with a formula that inverts a matrix of these O(k4) covariances, but a
run time of O(k2) is achieved using an involved algorithm described in [4]. This
scheme is not directly used in common software; instead Gotoh’s 3-way method [47]
of approximating covariance weights is normally used, for example in weighting
sequences during the polishing stages of MAFFT and Muscle.
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Table 2.5: Comparison of weighting methods.

Weighting method BAliBASE SABmark PALI average

uniform 82.4 / 53.6 48.4 84.0 / 57.3 71.6 / 55.5

influence 82.2 / 53.3 48.4 84.1 / 57.7 71.6 / 55.5

division 82.2 / 53.4 48.2 84.3 / 57.3 71.6 / 55.4

covariance 82.1 / 53.2 48.4 83.5 / 57.5 71.3 / 55.4

Division weights The program ClustalW introduced a simple weighting scheme
that has been incorporated into other alignment software as well, such as in the
construction stages of MAFFT and Muscle. We call ClustalW’s scheme, division
weights.

Briefly, division weights are computed by rooting the tree, then dividing the
length of each edge in the tree among the leaves under that edge, finally computing
leaf-pair weights as the product of the collected leaf totals. The wij for k sequences
can be computed in time O(k2).

Comparison Table 2.5 compares the accuracy of the weighting methods across the
benchmarks. We use an MST merge tree with normalized costs, exact gap counts, no
polishing, no consistency, and default parameters. (Using pessimistic gap counts
and polishing we find the same ranking of weighting methods.)

Covariance weights are computed exactly using matrix inversion, based on the
original method of [3] (i.e. not Gotoh’s approximation). The edge lengths `e on the
MST tree are computed from normalized costs dij by fitting edge lengths to T so as to
minimize the sum of the differences between path lengths `ij and the distances dij.
These optimally-fitted edge lengths are efficiently computed by solving a linear
program. Details of this linear program are given in Chapter 3. On BAliBASE and
PALI, we also report the TC score as the second measure of quality, since it is less
distorted by overrepresentation of groups than the SPS score.

Surprisingly, and in contrast to what has generally been suggested in the
literature [47, 29], unweighted sum-of-pairs (the uniform row of the table) performs
as well as all three weighting schemes. Even for inputs with the largest numbers of
sequences, where overrepresentation is more likely, weighting continues to give no
benefit under both measures of quality.

This behavior might be due to the fact that most benchmark alignments do not
contain strongly overrepresented groups. BAliBASE references 2 and 3 do provide
a set of inputs that are designed such that they contain somewhat oversampled
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Table 2.6: Comparison of weighting methods on BAliBase refs 2 and 3.

Weighting method BAliBASE refs 2 and 3 (SPS/TC)

influence 83.3 / 30.7

uniform 82.8 / 31.4

division 82.5 / 30.8

covariance 81.5 / 31.5

groups. Table 2.6 compares recovery of the weighting methods on the 28 inputs we
used from these two references. Here, the SPS and TC numbers show disagreement
regarding the best performing method. Since uniform weighting is most consistently
successful, even on these inputs manifesting overrepresented groups, we use uniform
weighting for the remaining tests in this chapter.

2.7. Polishing

The progressive alignment method forms an alignment at each internal node by
aligning the columns of the alignments at that node’s children, keeping those
columns intact. The result is that errors made in early stages can disrupt the
quality of the final alignment. Responses to this problem in the literature come in
two forms: (1) avoid errors in the first place (consistency-based schemes [84, 25]),
and (2) fix errors after they’ve been made (polishing, aka refinement [9]; see [52] for
review of methods). We consider polishing methods in this section, and consistency
in the next.

To our knowledge, all previously implemented techniques perform polishing by
splitting sequences into two groups, resulting in two induced alignments of subsetsA
and B of the sequences. The subalignments A and B induced on these groups are
realigned, without altering the columns of A or B. Realignment of A and B is done
as when merging alignments in Section 2.5 by aligning profiles [46, 64] or aligning
alignments [45, 63]. The resulting alignment is retained if its score improves. This
process is a form of local search, and is repeated for a fixed number of iterations or
until there is no improvement.

Though 2-partitions may be formed in a number of ways, the methods in
common tools either randomly split sequences into two groups [25], or perform tree
dependent restricted partitioning [52], which considers only those partitions that can
be formed by cutting an edge on the merge tree. Tree-based partitioning may be
iterated exhaustively over the edges of the tree [29], or edges may be repeatedly cut



37

at random [59]. Tools using random choices tend to do many iterations: ProbCons
by default does 100 iterations, and MAFFT does 1000.

We considered several alternatives, and present results of the three best
performers (with combinations) here:

Exhaustive 2-cut We implemented a tree-based method we call exhaustive 2-cut
that cuts tree edges and realigns until there is no improvement. Since a tree with
k leaves has O(k) edges, if there is an edge whose cut gives improvement this finds
it within a linear number of realignments.

Rather than scanning tree edges in a fixed order [29], we dynamically order the
edges e by a measure Φ(e) of their potential for improvement. For edge e, let P (e)
be the set of pairs of sequences that are on opposite sides of the partition given by
cutting e, let cij be the cost of the pairwise alignment induced on sequences i and j
in the current multiple alignment, and let dij be the cost of their optimal pairwise
alignment. We use the potential

Φ(e) :=

∑
(i,j)∈P (e)

(
cij−dij

)
|P (e)| . (2.6)

These potentials are updated after several cuts alter the alignment (a default
of five). This approach yields a slight speedup in convergence over the exhaustive
2-cut method used in Muscle [29] while attaining the same accuracy.

Random 3-cut Consider the situation where two sequences in a large alignment
are misaligned. The 2-cut method cannot separate these two sequences from the
rest of the input and realign them without interference from all other sequences.
This can be easily accomplished, however, by instead partitioning into three groups.
We examined a variety of methods for three-way partitioning, both tree-based and
not. We report the best one here, which we call random 3-cut. To our knowledge,
this is the first time 3-cut polishing has been implemented.

This method partitions the sequences by cutting two tree edges selected at
random. (A tree with k leaves has O(k2) such cuts, so an exhaustive approach
would be slow.) The resulting groups a, b, and c are merged in two steps by
realigning a and b to form group ab, and then realigning c with ab. We consider
the three merge orders ab|c, ac|b, bc|a, and retain the best of the three if it gives
improvement. This process is repeated until a time or iteration limit is reached.
Most edges are near the leaves, so this method tends to split off two relatively
small groups of sequences, enabling repair of errors between small groups followed
by integration into the rest of the alignment.

In contrast to 2-cut, this method in essence alters the merge tree. We also
considered 3-cut variants that reattach tree edges to reflect the merges of the three



38

Table 2.7: Comparison of polishing methods.

Polishing method BAliBASE SABmark PALI average

3-cut + on-the-fly 84.3 50.2 84.6 73.1

3-cut 84.2 49.7 84.8 72.9

2-cut 84.4 49.8 84.7 72.9

2-cut + on-the-fly 83.6 50.0 84.5 72.7

on-the-fly 83.3 49.6 84.4 72.4

none 82.4 48.4 84.0 71.6

groups, or that rebuild the tree on the affected paths up to the root, but surprisingly
none gave better quality than the above method that does not change the tree.

On-the-fly An attractive idea is to polish subalignments as they are formed [106],
rather than waiting for a complete alignment. This allows errors to be fixed
before causing further misalignment. We implemented a version we call on-the-fly
polishing: when an internal node v is created during merge tree construction, iterate
over edges that are grandchildren or children of v, at each iteration cutting and
realigning. This is repeated until no improvement is seen in one sweep through
nearby offspring edges. This is similar to 2-cut, but scans a limited set of edges
and operates while forming the initial alignment.

Combined We also consider the method of polishing both during and after
alignment construction. Our method is similar to the tree-based iterative algorithm
of [52], but with polishing at internal nodes restricted in depth, and post-polishing
possibly using tree-based 3-cuts, rather than 2-cuts. We call this method k-cut +
on-the-fly.

Comparison Table 2.7 compares the accuracy of polishing methods using MST trees
with normalized costs, exact gap counts, no weighting, no consistency, and default
parameters. For 3-cut we did 60 iterations; 2-cut and on-the-fly iterated until no
improvement.

These results suggest that the post-polishing methods tend to converge to
roughly the same alignments, and that depth-restricted on-the-fly polishing, though
a much faster (not shown) way to gain improvement, is not capable of reaching this
same convergence point on its own. It is worth noting that, for inputs with 30-40
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sequences, the run time for exhaustive 2-cut is generally twice that of the 3-cut
method. Also, using on-the-fly in conjunction with with exhaustive 2-cut slightly
speeds up convergence, since it performs much of the same polishing work before
the full compliment of sequences has been added.

In the rest of the chapter we use 3-cut + on-the-fly polishing.

2.8. Alignment consistency

Polishing, described in the last section, attempts to overcome the inherent error
propagation of the progressive alignment method by cleaning errors after-the-fact.
An alternate approach is to try to avoid errors in the first place, using a method
known as alignment consistency [84, 25].

In the standard alignment scheme, two sequences are aligned such that the
alignment optimizes, over all possible alignments, the sum of the substitution and
gap scores. These scores are position-independent: the substitution score is based
solely on the pair of characters being aligned (as from BLOSUM substitution score
matrices [51]), and the per-gap and gap-extension costs are fixed (the γ and λ values
of Section 2.5, possibly with different such fixed costs for internal and terminal
gaps). Two alignments are aligned in an attempt to optimize the sum of the
scores of induced pairwise alignments, with the constraint that the columns of each
alignment remain intact.

In the alignment consistency framework, costs are modified in a per-position
manner. Typically [84, 59, 25], this involves computing a consistency-modified
substitution score for each position-pair (ai, bj). These modified position-pair scores
are based on the amount of support found in other sequences C for the alignment
of position ai with position bj. Details of how this support is calculated for position
pairs differ from tool to tool, and are given detailed treatment in Chapter 4.

In the consistency framework, gap-related costs in these methods are usually
ignored, so that only modified substitution costs are used. The argument for doing
this is that gap costs are implicitly a part of the process of computing the modified
position-pair costs, but this approach may lead to less reasonable gap structure
than is typically recovered with an affine gap penalty. Our new method depends
not only on modified substitution scores, but also on modified per-gap and and
gap-extension costs.

As before, two alignments are aligned with the goal of optimizing the sum of
scores of induced pairwise alignments, where the scores are now based on modified
substitution scores.

Comparison We considered a wide variety of novel approaches for calculating
modified alignment feature costs. Details are provided in Chapter 4. Results of
the best-performing method are given in Table 2.8. We use an MST merge tree with
normalized costs, exact gap counts, no weighting, and default baseline parameters.
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Table 2.8: Comparison of consistency methods.

Consistency method BAliBASE SABmark PALI average

consistency, no polish 84.0 / 56.1 49.6 84.5 / 59.8 72.7 / 58.0

consistency, polish 83.6 / 56.2 49.9 83.7 / 57.2 72.4 / 56.7

no consistency, no polish 82.5 / 52.7 48.5 83.8 / 57.1 71.6 / 54.9

no consistency, polish 83.9 / 56.8 50.1 84.3 / 57.9 72.8 / 57.4

Results are given both with and without polishing, since consistency and
polishing are alternate approaches for solving the same problem, and the results of
one impact the efficacy of the other.

(The astute reader will notice that non-consistency numbers disagree slightly
with those of the prior section. This is due to a minor change in the set of alignments
used as input to the alternatives in this section).

These results show that the alignment consistency approach (without polishing)
overcomes early errors of the progressive alignment method about as well as post-
polishing does. Intriguingly, however, a mixture of the two approaches results in a
worsening of the average alignment recovery. Reasons for this worsening of quality
are discussed in Chapter 4.

Because consistency does not clearly improve results, and runs slower than no-
consistency with polishing (even with speedup methods described in Chapter 4),
the no-consistency option is used for the rest of the chapter.

2.9. Parameter advisor

Selecting gap penalties involves a good deal of guesswork [111] and most practition-
ers simply use the default values provided by modern software. Fortunately there
are now well-designed suites of protein alignment benchmarks, and the sequences in
these benchmarks presumably represent the kinds of protein inputs a tool will see
in the wild, which suggests that parameters optimized on those benchmarks should
be reasonably good choices (though this is likely not the case for DNA, where only
coding-DNA- [18] and -RNA- [38] benchmarks are available). We look at the effect
of parameter choice on accuracy from three perspectives: finding the best default
input-independent values, determining how well a perfect input-dependent choice
given by an oracle can perform, and designing an advisor that makes a good choice.
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Default parameters

To select default parameters for aligning proteins with Opal, we trained primarily
on BAliBASE. Based on results from doing inverse parametric sequence alignment
using the tool InverseAlign [62], we fixed the substitution matrix at BLOSUM62 [51]
and identified a reasonable seed value for the gap open and extension penalties. We
then enumerated a range of parameters around this seed, including variants with
reduced terminal gap costs. In total we examined 774 parameter choices.

To quickly filter out poor parameter choices, we aligned all BAliBASE inputs
with a fast version of Opal (MST with normalized cost, pessimistic gap counts, no
weights, and no polishing), and identified the 100 choices with the best average
recovery. We then selected a parameter choice from this set that had high recovery
on all three benchmark suites using a more accurate version of Opal (same as above,
but using exact gap counts and on-the-fly polishing). From this set of parameters we
selected as our default the choice that had the highest recovery over all three suites
of benchmarks. With BLOSUM62 transformed to a cost matrix in the range [0,88], our
default parameter choice has internal-gap open and extension penalties γI and λI ,
and terminal-gap open and extension penalties γT and λT , of

(γI , λI , γT , λT ) = (60, 38, 15, 36).

A reduced terminal-gap open penalty is common, typically half the internal-gap
open penalty [29], though a reduced terminal-gap extension penalty is not. This
parameter choice was used in all results described in prior sections.

Parameter oracle

While the default performs well overall, it severely underperforms other choices on
many benchmark alignments. (The default has accuracy more than 10% worse than
the optimal choice on about 15% of the inputs). This leads us to ask what accuracy
could be achieved if we had an oracle that could identify the best parameter choice
for each input. We consider results with an oracle for purposes of comparison.

Parameter advisor

Though a true oracle is unattainable, it is possible to design an advisor that can
choose an input-dependent parameter value that improves alignment quality. We
are aware of only one other attempt at implementing a method to automatically
choose parameters, called MULTICLUSTAL [118]. Our tests show that, for combina-
tions of 3 parameters, Multiclustal’s advisor performs poorly, typically choosing the
worst of the 3 on nearly 50% of inputs.

We considered a variety of novel advisor methods, and describe two of them
here.
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Naive Bayes advisor Multiple sequence alignments present a broad range of
features that may be useful in picking parameters for an input. ClustalW uses
one of these, percent identity in optimal pairwise alignments, as part of its score-
modification strategy. In addition to percent identity, we considered features related
to spacer density (number of gap characters) and gap-start density in computed
multiple alignments.

Our approach is to ask, for each parameter x among a small set of alternative
parameter choices P , “what is the range of observed feature values in alignments
generated by x that have high accuracy?”. The idea is that some parameters may
work better with alignments that are, for example, more gappy than average, and
that observing such traits may give support for using one parameter over another.
The approach is then to identify, for a new input, which parameter results in an
alignment with feature values most like those for which the parameter has worked
well on training data.

We fit a Gaussian, Gxj, for each feature j to the set of observed values of
that feature over all inputs S for which x is good (i.e. x results in an alignment
with accuracy no more than 2% worse than the best parameter choice). Similar
Gaussians, Bxj, are determined for bad inputs (x results in alignments at least 10%
worse than the best parameter). Distributions were trained using alignments from
BAliBASE for parameter choices in P .

After determining these distributions, a quality value is computed for parameter
choice x on input S as follows. Let Ax be the alignment of S under x, and let
f(j,Ax) be the value for feature j of Ax. Let G(x, j,S) be the area under the curve
Gxj of an interval sized ε around f(j,Ax), and likewise B(x, j,S) under the bad
Gaussian Bxj. Let g be the number of training inputs for which the parameter
is good, and likewise b for for bad, so g/b is a prior belief of the quality of an
alignment. Then the quality of a parameter x on an input S is

Q(x,S) =
g

b

∏
j G(x, j,S)∏
j B(x, j,S)

. (2.7)

Given a new input S, the parameter choice that this advisor selects is

p := argmax
x∈P

Q(x,S).

This approach bears a strong resemblance to a common discrimination technique
called a naive Bayes classifier [26].

Note that this approach makes an assumption that the various feature ranges
are independent. Modification to this approach to account for possible covariance
led to no improvement in advisor success.

Core column count advisor A simpler approach works as follows. Define a core
column to be a column in a multiple alignment where at least a fraction α of its
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rows have letters from the same character class in the compressed alphabet. (In
the experiments, we use α=0.9, and used the compressed alphabet of [59].) Given
a set S of input sequences to align and a candidate parameter choice x, let Ax be
the alignment of S that results from using parameter choice x, and let f(Ax) be
the number of core columns in Ax.

The parameter choice that this advisor selects based on core columns is

p := argmax
x∈P

f(Ax).

In other words, it selects the parameter choice that gives an alignment with the
most core columns (ties are broken in favor of shorter alignments).

Both of the above advisors perform similarly. We present results for the core
column approach. The output alignment using either advisor is Ap.

Comparison Table 2.9 compares the hypothetical accuracy of the oracle to
that achieved using default parameters and the advisor. We picked a set U of
twelve parameter choices that performed well on average and cover the domain
of reasonable gap open and extension values, and applied the oracle to set U .
The advisor was applied to a smaller set P ⊆ U of four parameter choices,
choosing p = (γI , λI , γT , λT ) from the set

P =



(56, 38, 7, 36),

(58, 37, 7, 35),

(64, 37, 8, 37),

(64, 38, 32, 36)


.

(An alignment Ax must be computed by the advisor for each x ∈ P , so a small
set P is preferable.) We also considered running the oracle on P .

Given a parameter choice, alignments were computed using the best methods
from prior stages: MST trees with normalized costs, exact gap counts, no weighting,
no consistency, and on-the-fly + 3-cut polishing.

The oracle clearly provides a large boost in recovery, and offers an intriguing
target for further research. The improvement of the advisor over the default is
modest, and might conceivably be the result of just fortuitous choices that exploit
the variation in accuracy within set P . A closer look, however, reveals that the
advisor’s performance is much better than random. For a given subset S ⊆ U ,
we can compare the accuracy of the advisor on S to that of the single best choice
from S. Our advisor outperforms the best choice for 60% of all subsets S ⊆ U
tested. It also outperforms the mean accuracy of the x ∈ S for 94% of all subsets.
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Table 2.9: Comparison of parameter advisor methods.

Parameter method BAli SAB PALI average

oracle on U 87.0 54.4 87.1 76.1

oracle on P 86.2 52.9 86.2 75.1

advisor on P 84.7 50.5 84.9 73.4

default 84.4 50.0 84.5 73.0

(If the advisor’s parameter selection were random, we would expect it to beat the
average accuracy 50% of the time.) By contrast the method in [118] outperforms
the best choice from S for only 1% of the subsets, and the mean of S for less
than 3%.

When comparing against other tools in the next section, we consider perfor-
mance both with and without an advisor.

2.10. Discussion

The prior sections have examined seven stages in the form-and-polish strategy, and
identified the best method for each stage. In Table 2.10 we summarize for all
stages the net improvement in alignment quality gained by the best method over a
standard method.

The baseline methods in the table are a UPGMA merge tree, percent identity
for distances, pessimistic gap counts to merge subalignments, unweighted sum-of-
pairs, no polishing, no consistency, and default parameters. We omit the stages of
choosing weights and consistency which gave no improvement.

These results represent the outcome of a careful study of methods for each
stage of the form-and-polish strategy for multiple alignment. This includes
new methods for estimating distances, merging alignments, weighting pairs of
sequences, polishing the alignment, employing alignment consistency, and choosing
parameters.

A new merging method that optimally aligns alignments yields only a minor
improvement over an approximate merging heuristic. The largest gains in quality
come from new methods for estimating distances by normalized alignment costs,
and polishing by 3-cuts on the merge tree; together these two boost recovery by
more than 4%. The weighting and consistency methods did not result in improved
accuracy as implemented, but are promising; details are given in the next two
chapters. The best method for a stage is generally the same across all suites
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Table 2.10: Assessing the accuracy gains by selecting best-of-breed methods selected
at each stage.

Stage BAli SAB PALI average

(baseline) 78.0 42.7 80.5 67.1

tree +1.4 +1.4 -0.7 +0.7

distance +2.2 +4.1 +3.2 +3.1

merge +0.8 +0.2 +1.0 +0.7

polish +1.9 +1.8 +0.6 +1.5

parameters +0.4 +0.3 +0.3 +0.3

(combined) 84.7 50.5 84.9 73.4

of benchmarks, suggesting that what we have singled out as best has not been
overfitted to the data.

This best combination of methods yields a new tool we call Opal. In brief,
the best-performing variant of Opal uses an MST merge tree, normalized costs for
distances, exact gap counts to merge subalignments, unweighted sum-of-pairs, no
consistency, and both on-the-fly and 3-cut polishing. A slight boost in accuracy
can be gained using the parameter advisor.

In Table 2.11, we compare the accuracy of Opal to other commonly-used
tools: ProbCons [25], MAFFT [59], Muscle [29], T-Coffee [83], and ClustalW [110].
On BAliBASE and PALI, the second quality measure we report is the percentage of
reference columns completely recovered, the TC score [6].

Both the most accurate and baseline versions of Opal are shown. All other
tools were run at their highest accuracy (for MAFFT this was their L-INS-i variant).
We highlight two observations: (1) The results show that even the baseline version
of Opal strongly outperforms ClustalW, which uses essentially identical choices at
each stage. This suggests that the pessimistic heuristic for aligning alignments
works much better than the heuristic used in ClustalW. (2) By combining the
best methods at each stage, Opal attains accuracy on par with the state-of-the-
art (namely ProbCons and MAFFT), even without using the alignment consistency
method that is responsible for much of the success of those tools.

Though the experiments presented in this chapter were performed on protein
benchmarks, Opal parameters have been learned for DNA and RNA alignments in
a manner similar to that in Section 2.9. Table 2.12 compares the accuracy of Opal
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Table 2.12: Comparison of the accuracy of Opal to commonly-used tools on the
RNA benchmark, BRAliBASE.

Tool BRAliBASE (SPS/TC)

ProbCons 86.9 / 76.8

Opal 86.8 / 76.7

MAFFT 85.8 / 74.8

Muscle 85.1 / 74.3

ClustalW 82.2 / 71.0

to that of other tools on the BRAliBASE benchmark, which consists of mostly RNA
alignments.

Opal was developed as a testbed for methods, with a focus on accuracy, but
has been somewhat optimized for speed. On inputs of 40 sequences, its running
time when using the exact algorithm for aligning alignments is about two orders of
magnitude slower than ClustalW and Muscle, and about the same as the slowest
tool, T-Coffee; the pessimistic heuristic for aligning alignments gives about an
order of magnitude speedup. Over all benchmarks, the median run time for Opal

with the exact algorithm, was less than 10 seconds, which was on an input of
20 sequences of length near 250.
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CHAPTER 3

WEIGHTS FOR SEQUENCE-PAIRS RELATED BY A TREE

Sum-of-pairs scoring of multiple alignments is problematic when applied to
sequences that have evolved on an evolutionary tree. The implicit assumption
of sum-of-pairs is independence of sequences, but biological sequences are related
under a tree-like evolutionary process, so the common case is that one sequence
will tend to be more similar to some sequences than to others, and sequences often
cluster into groups within the evolutionary tree describing their relationship. If
the input sequences oversample some groups, the result of optimizing sum-of-pairs
scoring will be to improve the pairwise alignments to such groups at the price of
worsening the pairwise alignments to other groups. An example of this is seen in
Figure 3.1.

Overview

Several schemes have been proposed to correct for this bias by nonuniformly
weighting the pairwise alignment scores in the sum-of-pairs measure. The two
schemes that are most widely used by current alignment software are described in
Section 3.1. A new scheme, which we call influence weights, is easy to implement,
overcomes the anomalies observed for the first two, and is the subject Section 3.2.

All these schemes assign weights to pairs of input sequences on the basis of a
tree T whose leaves correspond to the sequences, and that has edge lengths `e for
all edges e ∈ T . Each scheme assigns a weight wij to a pair i, j of leaves in T . We
now discuss details of the calculation of these weights.

3.1. Prior approaches

Covariance weights

Perhaps the best-known weights for sum-of-pairs multiple alignment are those of
Altschul et al. [3]. Of the two weighting schemes they suggest, their second scheme,
which they call rationale 2 weights, has the more rigorous basis. We call this scheme
covariance weights.

Let `(p) be the length of path p between two leaves in a tree, and let `(pq) be
the length of the overlapping portion of two paths p and q. Altschul et al. argue
that a correlation coefficient between two pairs of sequences should be defined as

ρpq =
(`(pq))2

`(p)`(q)
. (3.1)
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Weighting sequence pairs 

A B C 

20 seqs 2 seqs 50 seqs 

44 (a)Weighting sequence pairs 
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C 

40 A-B pair 

alignments 

 (20) 

 (2) 

 (50) 

100 B-C pair 

alignments 

1000 A-C pair 

alignments 

(b)

Figure 3.1: Overrepresented groups can dominate sum-of-pairs scoring function.
a) Sequences related by a tree, with two overrepresented groups. b) Sum-of-pairs
scoring will drive towards small improvements in alignments between sequences in
groups A and C, at the expense of possibly large reduction in quality in alignments
between sequences in group B and all others.



50
Weighting anomalies 

Covariance weights 

v 

x 

y 

u 

z 

47 

2w 

w 

d 
2d 

Figure 3.2: The covariance weight method gives the anomalous result that the ratio
of weights wxz : wyz depends entirely on the ratio of edge lengths `vx : `vy, even
when lengths `vx and `vy are very small compared to lengths `uv = `uz See text for
validation.

For k sequences, if these O(k4) covariance are stored in a matrix M , weights for the
pairs can then be computed by taking row sums from M−1. This would take O(k4)
time just to create such a matrix, but Altschul described an involved algorithm [4]
that avoids matrix inversion, and can compute weights in O(k2) time.

Covariance weights have the nice property of being independent of root
placement, but can exhibit counterintuitive behavior. For example, consider the
tree in Figure 3.2. Suppose edge lengths `vx and `vy are very small compared to
`uv and `uz. Under this condition, nodes x and y are essentially identical from
the perspective of z, so it is reasonable that wxz and wyz should be roughly equal.
But under covariance weights, if `vx = c `vy, then wyz ≈ cwxz even for arbitrarily
long `uv + `uz. An example is provided here: let `uv = 998, `uz = 1000, `vx = 2,
and `vy = 1. Then

M =


1 22

3·2000
12

3·1999

22

2000·3 1 19982

1999·2000

12

1999·3
19982

2000·1999
1
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=


1 0.00067 0.00017

0.00067 1 0.99850

0.00017 0.99850 1


,

M−1 =


1.00008 −0.16689 0.16647

−0.16689 333.61137 −333.11093

0.16647 −333.11093 333.61123


.

And the resulting pair weights are:

wxy = 0.99967 ,

wxz = 0.33356 ,

wyz = 0.66678 .

Covariance weights are not used in practice for sequence alignment, but an
approximate method for computing them, called 3-way weights is. See below for
details.

3-way weights

Aligning two length-n alignments of k sequences takes time O(n2k2) when the
substitution costs for aligning a column of one alignment with a column of another
alignment are computed naively. Gotoh described significant speedups using what
he called generalized profile operations [46, 103], which give an Ω(k) reduction in
run time, to O(n2k). This speedup is employed by the fastest alignment tools,
Muscle [29] and MAFFT [59], and in Opal [115]. However, these operations can
be shown [47] to work for the weighted sum-of-pairs scoring function only if each
pairwise weight wxy for sequences x and y is of the form

wxy = wx · wy (3.2)

(i.e. pair weights are the product of constant per-sequence weights).
Covariance weights do not obey this property, but Gotoh described a method

[47] of approximating covariance weights that does. This method is often called
3-way weights. Weights for each edge are computed based on a decomposition of
the tree into overlapping three-way trees. When aligning profiles formed from two
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subtrees (as is done in both progressive alignment [36] or tree-based polishing [52])
a weight wx can be efficiently computed for each sequence x as a product of the
weights of the edges from that sequence to the the root of its subtree, satisfying
equation 3.2.

The edge weights are computed as follows. For a three-way (unrooted) tree
with edges A, B, and C, with respective edge lengths a, b, and c, edge weights are
assigned values

wA =

√
bc(a+ b)(a+ c)

a(b+ c)FS

wB =

√
ac(b+ a)(b+ c)

b(a+ c)FS

wC =

√
ab(c+ a)(c+ b)

c(a+ b)FS

where S := (ab + bc + ac), and F is a hand-tunable parameter. In the full tree, a
leaf edge takes its weight directly from the single 3-way tree that contains the edge.
The weight of an internal edge is computed as the product of the weights for that
edge found in the two 3-way subtrees containing that edge.

This method depends on a hand-tuned parameter, and provides no guarantee
that it approximates covariance weights, though it found similar pairwise weights in
experiments on a very limited range of topologies [47]. To the extent that the 3-way
method does approximate covariance weights, it suffers from the same anomalous
behavior as covariance weights do. 3-way weights are used in the polishing stages
of MAFFT and Muscle.

Division weights

The program ClustalW introduced a simple weighting scheme that has been
incorporated into other alignment software as well, such as in the construction
stages of MAFFT and Muscle. We call ClustalW’s scheme, division weights.

In this scheme, each leaf i of a rooted tree T is first assigned a weight wi as
follows. The length `v of an edge from child v to parent u is equally divided among
the kv leaves in the subtree rooted at v, and the portion `v/kv that leaf i gets is
accumulated in wi. Letting pi be the path from leaf i to the root,

wi =
∑
v∈pi

`v/kv. (3.3)
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Figure 3.3: The division weight method gives the anomalous result that both wxz

and wyz converge to a value twice as large as wxy when lengths `vx and `vy are very
small compared to lengths `uv = `uz. See text for derivation.

The weight for pair i, j is defined to be wij := wiwj. It is easy to see that the wij

for k sequences can be computed in time O(k2), and that the weights satisfy the
requirements for equation 3.2.

Division weights are dependent on the placement of the root, which may be
problematic, as correct root placement is often not known for a set of sequences to
be aligned, and the tree construction methods used by alignment tools in the guide
tree construction stage (Section 2.4) compute unrooted trees. Division weights can
also exhibit counterintuitive behavior. Consider the tree in Figure 3.3. Suppose
lengths `vx and `vy are very small compared to lengths `uv ≈ `uz. The similarity of
x and y is high, so pair weight wxy should be much higher than pair weights wxz

and wyz, which correspond to unreliable alignments. But under division weights,
leaf weight wz will be roughly twice wx and wy since `uv is split between wx and
wy while `uz is given entirely to wz. The result is that wxz = wyz ≈ 2wxy. By using
division weights only in the construction stage (not in polishing), Muscle and MAFFT

avoid the trouble this causes, as the weights between groups only come into play
after the weights within groups have already played their role in the alignment of
those groups. This sort of error would wreak havoc with alignments if, for example,
the edge between x and v were cut in a tree polishing step (see Section 2.7). Note
that ClustalW does not perform polishing.

For another anomaly, see Figure 3.4. When `vx > `vy, weight wyz should be
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Figure 3.4: The division weight method gives more weight to more divergent
sequences. When sibling edges vx and vy have different lengths, the alignment
of the less divergent pair of sequences, z and y is more reliable, but receives less
weight under this scheme.

greater than wxz, since sequence y is more similar to z, and the alignment of y to z
is therefore more reliable than the alignment of x to z. But division weight method
sets wxz > wyz.

3.2. Influence weights

Here we describe a new weighting method that is easy to compute and overcomes
the anomalous behavior observed for the other methods.

One way to assign a weight wij to a pair i, j of leaves is to quantify the influence
of one leaf on another on the basis of the shape of T and its edge lengths. Suppose
we have a measure ω(i, j) of the influence of leaf j on leaf i in T where function ω
is not necessarily symmetric. Then we can define a symmetric weight on a pair of
leaves by the geometric mean of their influences:

wij :=
√
ω(i, j) ω(j, i). (3.4)

We call the wij obtained in this way influence weights.
Our influence function ω is nonnegative, and for every leaf i it satisfies∑

j : j 6=i

ω(i, j) = 1. (3.5)

As a consequence, the resulting weights satisfy 0 ≤ wij ≤ 1.
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Figure 3.5: Calculating influence weights. (a) Sequences i and j in the context of a
rooted tree. (b) The tree is re-rooted at i, and the influence of j on i is computed.

Influence definition

To determine the influence ω(i, j) of leaf j on leaf i, we carry out the following
recursive process. Imagine making i the new root of T , and letting T hang from
root i. We denote this rerooted tree with root i by Ti. Starting from root i, we
process Ti top-down, splitting the total mass of weight 1 from equation 3.5 among
the descendants of i. The new root i has exactly one child (which was originally the
parent of i in T ), and this child receives the entire mass of weight 1 passed down
from its parent i. In general, if a descendant x receives mass wx from its parent,
this mass is split among its two children y and z (possibly unequally) so that

wx = wy + wz. (3.6)

After completing this top-down splitting process, the amount of the original mass 1
at the root i that ends up at leaf j is taken as the influence of leaf j on root i, (see
figure 3.5b):

ω(i, j) := wj. (3.7)
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Influence weights 
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Figure 3.6: Graphical description of values used in influence calculation

The key is determining how to split the mass at a parent among its two children
on the basis of the edge lengths of T . We do such a split as follows.

For nodes v and w of T , denote the path in T between v and w by Pvw. For
a node y, let T (y) be the subtree of T rooted at node y, and let Tx(y) be T (y)
together with the path Pxy. Denote the length of path Pxy by `xy and the set of
leaves in T (y) by L(y). The total size of Tx(y) is

Sx(y) := `xy +
∑

e∈T (v)

`e . (3.8)

The average height (see Figure 3.6) of Tx(y) is

Hx(y) := `xy +
1∣∣L(y)
∣∣ ∑

i∈L(v)

`iy . (3.9)

We call the effective number of leaves in Tx(y),

Nx(y) :=


Sx(y)

Hx(y)
, Hx(y) 6= 0;

1, otherwise.

(3.10)

The effective number of leaves satisfies 1 ≤ Nx(y) ≤
∣∣L(v)

∣∣. See Figure 3.7 for
extremal examples of the effective number of leaves.
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Hx(y) = avg path length from x to L(y) 

Nx(y) = 
Sx(y) 

Hx(y) 
(effective # sequences) 

(size) 

(height) 

Sx(y) = l (x,y) +      l (e)  !  
e   T(y) 

(b)

Figure 3.7: Effective number of sequences in a subtree depends on the apparent
independence of sequences from the perspective of the root of the subtree. a) When
k sequences appear to be nearly identical, Nx(z) ≈ 1. b) When k sequences appear
to be independent, Nx(z) ≈ k.

In tree Ti, we split weight wx = wy + wz between the two children y and z of x
according to the ratio,

wy

wz

=
Nx(y)

Nx(z)

Hi(z)

Hi(y)
(3.11)

(where whenHi(y) = 0, we assign node y all the weight). For example, with children
that have identical average heights and effective numbers of leaves Nx(y) = 1
and Nx(z) = 3, child y gets 1/4 of wx and child z gets 3/4. See Figure 3.8 for
further examples.

Splitting the weight wi = 1 top-down over Ti according to these ratios fully
specifies the leaf weights wj, and hence the influence function ω(i, j) and the
weights wij.

For k sequences, influence weights wij can be computed in time O(k2), which is
optimal. They produce reasonable weights in the cases that division and covariance
weights produce anomalous results. For example, in the covariance anomaly of
Figure 3.2, influence weights converge to wyz ≈ wxz as `vz grows. In the division
weight anomaly of Figure 3.3, influence weights converge to wxz = wyz ≈ wxy/

√
2`vz

as `vz grows, which matches the expectation that the alignment of similar sequences
x and y should be more reliable than the other alignments. And in the division
weight anomaly of Figure 3.4, influence weights appropriately assign greater weight
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Split wx = wy + wz according to the ratio: 
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Figure 3.8: Splitting wx, the the portion of i’s weight that has been distributed to
x, between the subtrees of x. a) When heights are equal, the subtree with more
effective sequences gets a larger portion of the weight. b) When effective sequence
counts are equal, the subtree with lower average height to the root gets a larger
portion of the weight
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Figure 3.9: Altschul [3] suggests that the weight wxy should be 0 as length `yz goes
to 0. This may not be appropriate, as it will fail to sensibly align regions resulting
from convergent evolution.
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to a pair of sequences with higher similarity.
Influence weights disagree with both division and covariance weights in another

situation. Consider the unrooted tree in Figure 3.9 . Altschul suggests [3] that, as
`vz approaches 0, wxy should go to 0. At first glance this seems reasonable, since
in this extreme case sequence z is effectively the ancestral sequence relating x and
y, so those two sequences should align to each other through z. The covariance
weighting scheme achieves this goal, as do division weights (so long as the root is
placed approximately at z).

After further consideration, however, it appears that a non-zero wxy weight is
more appropriate. Consider the case where the sequences are:

x := ACTG ,

y := ACTG ,

z := ACG .

In other words, there were independent insertions of a T between the C and G of
the ancestral sequence. This is a simple form of convergent mutation, and though
the Ts are not homologous in terms of being replicated from the same ancestral
character, they are at the very least similar, and may be a sort of latent homology
(e.g. sequence x was primed for insertion of the T). If the wxy is zero, then the
weighted score of the multiple alignment of all three sequences won’t be affected
by the way those Ts are aligned (in the same column or two separate columns), so
no alignment will be preferred. In contrast, if wxy is non-zero, then the weighted
score will favor an alignment placing the insertions in the same column.

Influence weights assign a non-negligible value is assigned to wxy. This is due to

the Hi(z)
Hi(y)

component of the recursive distribution of influences. The concrete values
are:

ω(z, x) = 0.5 ,

ω(z, y) = 0.5 ,

ω(x, y) = 0.33 ,

ω(x, z) = 0.67 ,

ω(y, x) = 0.33 ,

ω(y, z) = 0.67 ,

so
wxz =

√
0.5 · 0.67 = 0.58 ,

wyz =
√

0.5 · 0.67 = 0.58 ,

wxy =
√

0.5 · 0.33 = 0.41 .
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These weights seem reasonable, as they assign most of the weight to good
alignments of x through z to y, but will still reasonably resolve instances of
convergent evolution.

Efficiently computing weights

Pairwise weights can be computed by hanging the tree by each leaf i in order,
and for each such rehanging, computing the influence of each other leaf j on i
by distributing i weight across the tree as described in the previous section. If the
average height, Hx(y), and effective number of leaves, Nx(y), are pre-computed then
distribution of weights for each root will take O(k) time for k sequences, resulting
in an overall Θ(k2) computation.

In an unrooted binary tree T , every internal node has three relatives, which
map in some way to the parent and two children in a rooted tree, with the mapping
dependent on how the tree is rooted. We aim to store for each internal node x the
Hx(y) and Sx(y) values for each relative y as thought x were the root of T and those
relatives were all its children. Then, for any arbitrary hanging of T , we will have
the Hx(y) and Sx(y) values for the two children y of x induced by that hanging.

These values can be computed in an O(k) preprocessing step, in which we
begin by hanging T by an arbitrary leaf. A simple bottom-up pass over T allows
computation of the Hx(y) and Sz(y) values for the two children y of every node
x induced by that hanging, but does not assign the values for the third relative
(currently the parent). The Sz(y) values of the parent for a fixed node is simply
the total branch-length of the tree minus the sizes of the two other relatives. Hz(y)
values can be gathered via a second top-down sweep over T , in which weighted
heights to the remainder of the tree above that node are collected based on values
computed in the first (bottom-up) pass.

It appears to be not possible to apply these weights to Gotoh’s generalized profile
operations, since the weights are not of the form wij = ωi ·ωj, and there is no clear
way to make them behave in a way analogous to the method of 3-way weights for
profile operations [47]. This is because of the Hi(x) factors in formula 3.11. This
suggests an avenue of future work on the problem.

3.3. Estimation of edge lengths

All the methods described in this chapter for computing pair weights depend on
a tree with known edge lengths, a requirement that is largely ignored in papers
describing the application of weights to sequence alignment. The neighbor-joining
method, used for guide tree construction (Section 2.4) in ClustalW, generates a
tree with accompanying edge lengths, but the guide tree methods that have been
shown to produce better alignment results, UPGMA and MST [30, 59, 115], generate
a topology only, with no edge lengths. When guide trees are so constructed, a pair
weight method requires that edge lengths be computed.
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In the tests described in Section 2.6, we estimated edge lengths by minimizing
the L1−norm between the observed pairwise distances and the path lengths induced
by the tree’s edge lengths. The L1−norm is a measure of distance between vectors
that is often called manhattan distance, specifically the sum of differences in vector
values. In this case it is the sum over all leaf-pair paths of the differences between
observed and tree-induced path lengths. Formally, given a tree topology T and
pairwise distances dij, let `(e) ≥ 0 be the estimated length of edge e, and let `ij
be the length of the path pij from leaf i to leaf j: `ij =

∑
e∈pij

`(e). The L1-norm
can be found using a simple linear program, with the objective function minimizing∑

i,j |dij − `ij| .
The L1−norm is not, however, the only method for estimating edge lengths.

For example, the Minimum Evolution method of phylogeny inference is based on
least-squares inference of edge lengths, which is essentially the L2−norm (often
called Euclidean distance, the square root of the sum of squared differences).
Under least-squares, edge lengths are found that minimize

∑
i,j(dij − `ij)

2. This
method for fitting a linear function to data is known as ordinary least squares
(OLS); its application to edge length estimation was suggested by Cavalli-Sforza
and Edwards [19], and followed by Altschul [3] and Gotoh [47]. It works under the
implicit assumption that errors in observed values are uncorrelated and have equal
variance. OLS is known to be a maximum-likelihood estimator of a function when
these conditions hold and errors are normally distributed. Furthermore, the Gauss-
Markov theorem indicates that OLS has the minimum variance among all linear
estimators when errors have expected value of zero, regardless of the distribution [1].

Since variance of the distance estimate for a pair of sequences is known to rise
as sequence distance rises [39], the assumption of equal variance among pairwise
distances is unfounded; lengths can be found under weighted least squares (WLS),
which accounts for the per-pair variances. Also, pairwise distances are, of course,
correlated since the sequences are related by a tree; generalized least squares (GLS)
accounts for this by incorporating a covariance matrix. Bryant and Waddell [14]
described algorithms for computation of edge lengths under each of these criteria,
OLS, WLS, and GLS with respective run times of O(k2), O(k3), and O(k4) for k
sequences. Variances and covariances for pairwise distances under the Jukes Cantor
model of sequence evolution [58] can be estimated using the method of Bulmer [16,
39].

3.4. Discussion

We have presented a new method for computing non-uniform weights for sequences
related by a tree. It is easy to implement, fast to evaluate, and avoids the anomalies
of current approaches. Surprisingly, and in contrast to what has generally been
suggested in the literature [47, 29], unweighted sum-of-pairs performs as well as all
weighting schemes that we tested in our experiments on using weighted sum-of-
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pairs scores for multiple sequence alignment (see Section 2.6). Even for the small
number of inputs from BAliBASE that do present some level of overrepresentation,
the accuracy gains from using these weights are limited at best.

An important point, which to our knowledge has not been mentioned in prior
studies of multiple alignment methods, is that the standard measure of recovery
is itself inherently biased. The SPS recovery score is measured uniformly over all
induced pairwise alignments. So if a weighting method alters an alignment by
correcting for over-represented groups, it is entirely possible that the corrected
alignment worsens between a few highly over-represented groups while improving
between several under-represented groups, and in the end has decreased percent
recovery under SPS. Most other measures of alignment accuracy also sum a measure
of pairwise accuracy over all pairs, and thus suffer the bias. (The TC score measures
accuracy as the percent of reference columns that are exactly recovered by the
computed alignment; thus, it doesn’t suffer the same problem, but is highly sensitive
to small errors, and thus seems not applicable to alignments of a large number of
sequences.) While weighting methods attempt to correct for precisely this bias, it is
far from clear how to measure recovery more objectively, since measuring recovery
using a weighting method’s own weights is not objective either.

It is possible that the choice of L1-norm edge lengths had a negative impact
on the quality of pair weights, leading to the observation (Section 2.6) that pair
weights did not impact alignment quality. This is worth further consideration, since
other work ([29, 59]) suggests a slight positive impact from weights, though they
do not describe how edge lengths were computed for their trees.

Finally, we note that this weighting scheme is general, and may be applied
to other fields in which entities are related by a tree. For example, they could
be used in estimating an average character trait value for a family of organisms,
or in improving homology search against sequence families, or in other tree-based
measures such as a “balanced” average subtree distance with application to the
least-squares framework for edge length estimation [24]) (see Section 8.2 for more
details of this idea).
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CHAPTER 4

IMPROVING MULTIPLE ALIGNMENT THROUGH PAIRWISE ALIGNMENT
CONSISTENCY

The standard heuristic for building multiple sequence alignments, called
progressive alignment [36] and described in detail in Chapter 2, merges sequences
into increasingly large alignments in an order determined by a binary tree relating
the input sequences. Each leaf of the tree stores a single sequence from the input
(this sequence can be thought of as a degenerate alignment), and each internal
node stores an alignment of the sequences belonging to the leaves in the subtree
under that node. The alignment at an internal node is generated by merging
(aligning) the alignments of the node’s two children. When merging alignments,
columns of one alignment are aligned with columns of the other; the columns of
each child alignment remain unaltered in the resulting alignment. In this process,
an alignment at an internal node is formed based only on information contained in
the sequences being aligned, without regard for how well the resulting alignment
will align with other sequences in the final alignment formed at the root of the tree.

The progressive alignment heuristic can be contrasted with computing an
optimal alignment of multiple sequences, e.g. [71]. By definition, optimal alignment
of multiple sequences under the standard sum-of-pairs scoring function (which is
NP-hard [114]) induces pairwise alignments for each pair of sequences A and B that
are optimal with respect to how the alignment (A ∼ B) constrains alignments of A
and B with all other sequences C - no other alignment of A and B could improve the
sum of pairwise scores over all pairs in the alignment. In the standard progressive
strategy, an optimal alignment of sequences in a subtree is computed based on local
information contained in those sequences, and may prove to be suboptimal in the
larger context of the full alignment - resulting in a final alignment in which some (or
all) induced pairwise alignments (A ∼ B) could be realigned in a way that would
improve the overall alignment score.

As mentioned in Chapter 2, one approach to resolving this suboptimality is
to modify the alignment after the fact, in a method known as polishing (see
Section 2.7). Another approach is to avoid making the errors in the first place
using a technique based on consistency of alignments.

The idea of using alignment consistency is to bridge the divide between the
progressive and exact approaches. The core idea is to make alignment decisions
at each internal node of the progressive alignment guide tree based on global
information, specifically information gleaned from other sequences in the input.
Practically, this means modifying the function used to score an alignment generated
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for the sequences belonging to a subtree in a way that reflects the support given by
sequences outside that subtree for particular alignment decisions. Use of consistency
has been shown to improve recovery of reference alignments by several percent on
average [83, 25].

All the consistency-based methods described below share the common strategy
of modifying scores for aligning pairs of sequences, then aligning alignments so
as to optimize the sum of (modified) pairwise alignment scores. For this reason,
description of methods below will focus on how scores are modified for alignments
of a pair of sequences A and B.

Under standard scoring conventions, the score for aligning two sequences is
comprised of substitution scores and gap penalties. Substitution scores are typically
derived from a matrix (e.g. BLOSUM [51]) that gives a position-independent score
for substituting one letter with another, while affine gap penalties (see Section 2.9)
are composed of a per-gap cost, γ, and a length-dependent cost, `λ for a gap of
length `. The gap costs are position independent, and chosen so that the tool
performs well on benchmarks.

In the consistency framework, position-dependent scores are computed. A
substitution of the ith position of A with the jth position of B can be represented
as (ai ∼ bj). The position-dependent score D(ai, bj) of (ai ∼ bj) depends on the
support given by other sequences for that particular substitution. Gap penalties
are not used in prior implementations of this framework, so that the score of an
optimal pairwise alignment of prefixes (a1 . . . ai) of A and (b1 . . . bj) of B can be
computed by the recurrence in equation 1.2, but with D(ai, bj) replacing σ(ai, bi),
and λ = 0.

This recurrence can be generalized to aligning two alignments, A and B, by
replacing the D(ai, bj) score with a function that sums over the scores of all pairs
of characters between the two columns i and j. The two-sequence variant finds a
maximum weight trace [61] on two sequences, and the two-alignment variant finds
a constrained maximum weight trace of all the sequences in the two sets, in which
the columns of the two merged alignments are required to remain intact.

As described in Section 1.2, an alignment of two sequences can be viewed as
a path in a 2-dimensional dynamic programming table. It is useful to consider
features of such paths, as they will play a role in devising a more complete model
of alignment consistency. A feature can be thought of as a subpath in the graph.
A diagonal edge in a path (as in Figure 4.1a) corresponds to a substitution feature.
A vertical or horizontal edge in a path (as in Figures 4.1b and c) corresponds to a
gap extension feature, while the subpaths in Figures 4.1d through k correspond to
gap-open and gap-close features.

Note that in prior alignment consistency methods, a substitution score (the
diagonal edge in Figure 4.1a) is incorporated, but all other features (gap-related
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Figure 4.1: Features in dynamic programming table for alignment (A ∼ B). (a)
Substitution of ai with bj. (b) Placing ai somewhere in a gap between bj and bj+1.
(c) Placing bj somewhere in a gap between ai and ai+1. (d and e) The general
(d) and special (e) cases of opening a gap with ai immediately following bj. (f
and g) The general (f) and special (g) cases of opening a gap with bj immediately
following ai. (h and i) The general (h) and special (i) cases of ai ending a gap that
immediately follows bj. (j and k) The general (j) and special (k) cases of bj ending
a gap that immediately follows ai.
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costs, Figures 4.1 b through k) have zero cost. The argument supporting this
gap-cost-free approach is that gap costs are considered in computing the modified
substitution scores, so they need not be considered in the final alignment procedure
based on those modified scores. However, it is possible that conflicting signals from
a set of different sequences could lead to an alignment (A ∼ B) that opens gaps in a
way that is universally poor, for example opening many small gaps rather than a few
large gaps. Such gap patterns are restricted in standard alignment methods by use
of the common affine gap cost function, in which each run of gap characters incurs
a per-gap penalty (γ, which corresponds to the open and close costs pictured in
Figures 4.1d through k) and a per-unit-length penalty (λ, Figures 4.1b and c). For
this reason, it seems worthwhile to consider a consistency-based score modification
method that includes modified gap costs. Our new method does this.

4.1. Prior approaches

The idea of using consistency to improve alignments has a long history. Gotoh [44]
described a method that identifies regions in optimal pairwise alignments that are
consistent with each other, and uses them as anchor points in an algorithm for
exact alignment of multiple sequences. It is noteworthy that the method does not
simply consider a single optimal alignment for each pair of sequences, but rather
the set of alignments for each pair that have optimal score. Unfortunately, as the
number of sequences grows, it becomes increasingly unlikely that all sequence pairs
will agree with any anchor point, severely limiting the scale of inputs the method
can handle.

The methods described below employ consistency in a progressive alignment
framework. The primary difference between these methods is how each measures
support for an aligned pair.

T-Coffee Notredame et al. merged the ideas of consistency and progressive
alignment in their landmark work on tools Coffee [84] and T-Coffee [83]. This
amounts to a redefining of the term consistency as applied to alignment: rather
than using consistent segments of pairwise alignments as mechanisms for speeding
exact alignment, these tools use consistency of pairwise alignments to improve the
quality of alignments built with the progressive framework. They take as input a
set of sequences and a set of pairwise alignments of those sequences, and define
the quality of a multiple alignment of those sequences as the extent to which that
multiple alignment is consistent with the set of pairwise alignments. There is no
requirement that all pairwise alignments be consistent with any part of the resulting
multiple alignment, just that the multiple alignment try to agree as much as possible
with those pairwise alignments. Where T-Coffee and other consistency methods
differ is in their definitions of such agreement.

The approach of T-Coffee is to compute substitution scores for all pairs
of positions in all pairs of input sequences, then perform alignments based on
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those position-pair substitution scores. The position-pair scores of T-Coffee are
calculated as follows. For each pair of sequences (A,B), an optimal global alignment
is calculated using ClustalW [110], and the 10 top-scoring non-overlapping local
alignments from Lalign [55] are gathered. Every aligned position pair (ai ∼ bj)
found in one of these alignments contributes a value to the position-pair score
S(ai, bj), where the value contributed is the percent sequence identity of the
alignment containing that pair. The motivation behind using percent identity as
a weight is that more similar sequences should contribute more information to the
final alignment. Scores are contributed additively, so that if a pair is found in more
than one pairwise alignment (i.e. both a global and local alignment), it will have a
score that is the sum of the percent identities of the containing alignments. If a pair
is not found in any alignment, then its score is 0. This describes how to calculate
an initial score for each pair. The set of initial scores is called the primary library.

The notion of consistency is employed in developing what is termed the extended
library. The approach is to quantify the support from other sequences C for aligning
a position pair (ai ∼ bj) by tallying the positions ch that are found to align to both
ai and bj in the input alignments. These can be thought of positions such that ai

aligns through ch to bj, (ai ∼ ch ∼ bj). Specifically, the consistency-based position-
pair score is

D(ai, bj) = S(ai, bj) +
∑

C

min {S(ai, ch), S(bj, ch)}. (4.1)

For k sequences of length n, T-Coffee requires time O(k2n2) and space O(k2n)
to construct and store the primary library, and worst case time O(k3n2) to complete
the extended library (though in practice runtime is reported to be roughly O(k3n)
because of the sparseness of the score matrices in the primary library). Results given
in the T-Coffee paper (and reiterated in Sections 2.10 and 4.6) show that T-Coffee
gives a several percent average increase in recovery over ClustalW, affirming the
benefits of incorporating local alignment and triple-based consistency.

As mentioned earlier, one concern about this approach is that the alignment
method depends only on substitution scores, with no accounting for gaps. Another
significant drawback of this approach is that only a single optimal global alignment
for each pair is used to establish pair scores. This is despite the fact that when
sequence C is eventually merged with the alignment (A ∼ B), it will likely do so
with an alignment that disagrees with the both optimal alignments (A ∼ C) and
(B ∼ C). It seems preferable to allow C to contribute to the modified (A ∼ B)
scores by expressing the extent of suboptimality required of alignments (A ∼ C)
and (B ∼ C) in order to support the alignment of position-pair (ai ∼ bj).

MAFFT Katoh et al. developed a method [59] that allows MAFFT to compute
its analog to the extended library in time quadratic in the number of sequence,
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avoiding the cubic overhead of T-Coffee. Rather than explicitly measure support
for aligning positions (ai ∼ bj) based on triples (ai ∼ ch ∼ bj), MAFFT’s
approach measures support based on how often ai and bj are part of some optimal
alignment. The importance score of a pair of positions is computed such that
high scores are assigned to pairs in which both positions are frequently involved in
(possibly independent) high-scoring gap-free segments in pairwise alignment with
other sequences. Position-pair scores are calculated based on a linear mixture of
BLOSUM-derived substitution scores and these importance scores.

This approach avoids explicitly considering triples of strings, and results in
a runtime of O(k2n2) for calculation of consistency-modified position-pair scores.
While this method gives a significant speedup in practice, the role of consistency
has been changed to an indirect one: rather than finding an alignment that will
be consistent with respect to other sequences, it finds an alignment that aligns
positions that are consistently (read: frequently) paired off in other alignments.
Even with this indirect approach, results given in the paper show a several percent
improvement in recovery, across a variety of benchmarks, over not using this
consistency approach (see Section 4.6).

Aside from the indirect method of computing consistency modified scores
MAFFT’s approach is essentially the same as that of T-Coffee. It bases its
consistency-modified scores on global alignments computed with its FFT alignment
algorithm, and optionally includes local alignments from the tool fasta34. Like
T-Coffee, MAFFT does not account for sub-optimal global alignments in assigning
scores, and does not incorporate gap costs in the final alignment cost scheme.

ProbCons Do et al. introduced an idea they call probabilistic consistency, in a tool
named ProbCons [25]. Their approach depends on an established method [28] of
computing, for a pair of sequences A and B, the probability that each position ai

aligns with each position bj. Letting z∗ be the true alignment, and Z the set of
all possible alignments, their method defines the posterior probability of residue ai

aligning to residue bj as

p(ai ∼ bj ∈ z∗|A,B) =
∑
z∈Z

P (z|A,B) 1(ai ∼ bj ∈ z) (4.2)

where 1(expr) is the indicator function that returns 1 if expr is true, and 0
otherwise. P (z|A,B) represents the probability of emitting alignment z under
a pairwise HMM (see [28]), and given sequences A and B.

Two sequences can be aligned in a way that maximizes the sum of these
probabilities, in effect finding an alignment of maximum expected accuracy [78, 28].
(It should be noted that this may disagree with the most probable alignment under
the pair-HMM, found using the so-called Viterbi algorithm, which is equivalent
to the standard dynamic programming algorithm.) This pairwise alignment
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method can be trivially extended to aligning multiple sequences: the position-
pair probabilities are simply another form of position-pair score, so progressive
alignment can be applied with sum-of-pairwise scores maximized at each internal
node.

The notion of consistency is applied to this framework via a consistency
transformation based on the probability, for each other sequence C in input C,
of the pairs that induce an aligned triple (ai ∼ ch ∼ bj). This is computed as

p′(ai ∼ bj) =
1

|C|
∑
C∈C

∑
ch

p(ai ∼ ch) p(bj ∼ ch). (4.3)

These consistency-transformed probabilities replace the initial ones in computing
an alignment with maximum expected accuracy.

This approach represents a key advance in sequence alignment. In the other
methods described, only a single optimal global alignment is used for each pair of
characters, along with a small number of local alignments. These do not allow any
input from pairwise alignments that are suboptimal under the scoring function, or
for that matter, any alternate alignments with optimal score. In the scheme of
ProbCons, alignment probabilities for each pair of positions (ai, bj) are summed
over all ways of aligning A and B. Thus, in the consistency transform, all pairwise
alignments, optimal and suboptimal, contribute to the support (score) of pair
(ai ∼ bj), with their level of support dependent precisely on the probability of
that alignment under the model.

The time to compute the initial p(ai ∼ bj) values over all pairs of sequences
is O(k2n2). The worst-case time to then calculate the transformed probabilities is
O(k3n3): for each triple of sequences, each pair (ai, bj) requires consideration of all
positions ch. But since most values in the probability matrices are typically near
zero, the transformation is computed efficiently using sparse matrix multiplication
by ignoring all entries smaller than a threshold ω. Thus, the runtime is cubic in
k with a smaller practical factor of n. The paper reports a 5% improvement in
benchmark recovery over using pair probabilities without consistency, in agreement
with results in Section 4.6.

An additional benefit of the method is that it also offers a column reliability
score that estimates the probability that each column represents a correct alignment
of residues.

A variety of tools based on the ProbCons’ formulation of probabilistic consis-
tency have been developed in the past few years [88, 89, 93, 97, 86, 11], with various
aims of improving speed, accuracy (sensitivity), or specificity. All follow the same
central dogma of determining consistency-based scores using only information about
aligned pairs, with no regard for gap costs. The two recent tools out of Pachter’s
group, AMAP [97] and FSA [11], do somewhat account for gaps in the progressive
alignment step, but this is only after gap-ignorant consistency modification is
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performed, and still ignores the per-gap penalties that allow affine gap scoring
to prefer long gap stretches over many short gaps.

4.2. Suboptimality as a measure of support for alignment features

In the equations above, a position ch provides support for the alignment of ai with
bj only if it is aligned with both. In a sense, this doesn’t so much consider the
consistency of alignments of C with A and B as it does the constraint they impose.
For example, the following pairwise alignments of C with A and B are consistent
with (ai ∼ bj), in the sense that they do not restrict that alignment from occurring:

· · · ai−1 ai
ch − · · · and · · · ch −

bj−1 bj
· · ·

Consistent, but non-constraining, alignments may provide more flexibility for
identifying support of one sequence for alignment of another. But because of the
high level of freedom such alignments have, they incur extra computational burden,
so we follow in the footsteps of the methods above, and consider only alignments
involving other sequences C that constrain the alignment of A and B to have
particular features, though we continue to describe the approach as consistency-
based, in agreement with standard nomenclature.

Our approach departs from other methods in two ways:

1. It explicitly accounts for gaps. Rather than compute only consistency-
modified substitution scores and align with no-cost gap model, we compute
consistency-modified costs for all features of an alignment under affine gap
costs: substitution, gap-open, gap-extension, and gap-close costs.

2. Rather than ask “which optimal alignments support this alignment feature?”,
our method asks “what is the minimum suboptimality required of other
alignments in order for those alignments to support this feature?”. The first
question is the one asked by the consistency methods of T-Coffee and MAFFT.
The latter is similar to that asked by ProbCons, though in fact, ProbCons goes
further by effectively soliciting support from all alignments, not just the least
suboptimal.

4.2.1. Modified substitution score

We begin by describing a simple method of computing the support by a sequence
C for a pairwise substitution, (ai ∼ bj), a diagonal edge in the dynamic programing
matrix. Similar modified costs for other edges are described later, and a more
complete discussion of modification equations follows in the next section.

The extent of agreement that position ch has with substitution (ai ∼ bj)
(Figure 4.1a), can be determined by computing the level of suboptimality required
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Figure 4.2: Subpaths of alignment graphs of (A ∼ C) and (B ∼ C) that are
consistent with (ai ∼ bj) (figure 4.1a). The alignment that agrees with these
subpaths is:

ai
· · · ch · · ·

bj

of alignments (A ∼ C) and (B ∼ C) to be consistent with the substitution. Since
our definition of consistency requires constraint, the only way ch can be consistent
with (ai ∼ bj) is if ch is aligned with both: (ai ∼ ch ∼ bj). This can be represented
as a pair of alignment subpaths, one for (A ∼ C) and one for (B ∼ C), as in
Figure 4.2.

Let T (A,C) be the optimal (minimum) cost of aligning A and C, and let
Tih(A,C) be the cost of the optimal alignment of those sequences, under the
constraint that the alignment is forced to go through the diagonal edge (ai ∼ ch).
Then the suboptimality of using that edge is defined as

Sih(A,C) :=
Tih(A,C)− T (A,C)

T (A,C)
. (4.4)

Sjh(B,C) is defined similarly. The suboptimality required of C in order to support
(ai ∼ bj) can be defined by picking the best position ch :

sub(ai, bj, C) := min
h

{
max {Sih(A,C) , Sjh(B,C)}

}
. (4.5)

Suppose the values of Sih(A,C) and Sjh(B,C) are capped at ∆ (this is done for
reasons of computational efficiency, as described later). Then one way of modifying
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the cost of substitution (ai ∼ bj) given a single other sequence C is to define the
modified cost as:

D(ai, bj) := σ(ai, bj)

(
1 + F · sub(ai, bj, C)

∆

)
, (4.6)

where σ(x, y) is the cost of substitution x for y, as from a substitution cost matrix
(e.g. BLOSUM62 transformed to a cost matrix). Under this definition, an aligned
pair (ai ∼ bj) with consistent subpaths that are optimal (sub(ai, bj, C) = 0) will
have cost σ(ai, bj), while an aligned pair (ai′ ∼ bj′) with maximally suboptimal
consistent subpaths will have that cost multiplied by (F + 1).

Equation 4.6 can be extended to computing modifications based on a set of
other sequences C by taking the average suboptimality over the sequences C ∈ C:

D(ai, bj) := σ(ai, bj)

1 + F ·

∑
C∈C

sub(ai, bj, C)

|C| ·∆

 . (4.7)

The consistency definitions provided here are fairly simple. Somewhat more
complicated (and more successful) methods are discussed in Section 4.3.

4.2.2. Modified gap extension scores

The modified cost described above is a substitution cost, which corresponds to a
diagonal edge in the dynamic programming table of alignment (A ∼ B), as in
Figure 4.1a. Computing modified costs for other features is done in a similar
fashion. For example, a vertical gap extension is shown in Figure 4.1b, and
corresponds to character ai being part of a run of characters from A that align
to a gap in B between bj and bj+1. A modified vertical gap extension cost can be
based on the level of suboptimality required for alignments (A ∼ C) and (B ∼ C) to
be consistent with the edge of (A ∼ B) shown in Figure 4.1b. One such consistent
pair of alignment subpaths involving C is shown in Figure 4.3. An exhaustive list
of such subpath-pairs, consistent with both vertical and horizontal (Figure 4.1c)
gap extensions, is given in appendix Section A.0.2.

Let T (B,C) be defined as before, and let Tj≺h(B,C) be the cost of the optimal
alignment of (B ∼ C) when that alignment is forced to go through the horizontal
edge leading to cell (j, h) of the dynamic programming table (the right half of
Figure 4.3). Then the suboptimality of that edge is defined as

Sj≺h(B,C) :=
Tj≺h(B,C)− T (B,C)

T (B,C)
, (4.8)
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Figure 4.3: Subpaths of alignment graphs of (A ∼ C) and (B ∼ C) that are
consistent with ai extending a gap after bj (Figure 4.1b). The alignment that
agrees with these graphs is:

◦ ai
· · · ◦ ch · · ·

bj −

(where ◦ represents freedom to either include or not include a character from the
associated sequence )

and the suboptimality required of C in order to support the edge of (A ∼ B) shown
in Figure 4.1b can be defined by picking the best position ch, for the best subpath
pair p among all consistent subpath pairs P :

ext(ai, bj, C) := min
pP

{
min

h

{
max {Sih(A,C) , Sj≺h(B,C))}

}}
. (4.9)

With the cap ∆ on the value of S(·) suboptimality values, the modified vertical
gap extension cost due to a set of other sequences C can be defined as:

V (ai, bj) = λ

(
1 + F · avgC∈C{ext(ai, bj, C)}

∆

)
, (4.10)

where λ is the unmodified cost of a gap extension.

4.2.3. Modified per-gap scores

Per-gap costs can be modified in a similar way. In our model, the typical per-
gap cost (γ) is divided into two halves, the gap-open cost and the gap-close cost,
each with value γ/2. This is done to ensure that an alignment under the modified



74

!"

#"

$"

%"

&"
'"

#"

("

%"

)*+,"$"

Figure 4.4: Subpaths of alignment graphs of (A ∼ C) and (B ∼ C) that are
consistent with ai opening a gap immediately after bj (figure 4.1d). The alignment
that agrees with these subpaths is:

◦ ai
· · · ch−1 ch · · ·

bj −

(where ◦ represents freedom to either include or not include a character from the
associated sequence )

cost scheme will have the same score if its columns are reversed. Here, we give an
example of computing modified vertical gap-open costs (Figure 4.1d). A vertical
gap-open corresponds to ai being the first character in a run of characters from
A that are aligned to a gap between positions bj and bj+1. Horizontal gap open
costs (Figure 4.1f), and both vertical (Figure 4.1h) and horizontal (Figure 4.1j)
gap-close costs are computed similarly. One pair of subpaths involving C that is
consistent with the horizontal gap open of Figure 4.1f is shown in Figure 4.4. An
exhaustive list of such graph-pairs, consistent with both horizontal and vertical gap
boundaries, is given in appendix Section A.0.3.

Let T (B,C) be defined as before, and let Tj|≺h(B,C) be the cost of the optimal
alignment (B ∼ C) when that alignment is forced to open a gap with ch being
the first entry of the gap following bj (the right half of Figure 4.4). Then the
suboptimality of that path is

Sj|≺h(B,C) =
Tj|≺h(B,C)− T (B,C)

T (B,C)
, (4.11)

and the suboptimality required of C in order to support the gap open in (A ∼ B)
shown in Figure 4.1f can be defined by picking the best position ch, for the best
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subpath pair p among all consistent subpath pairs P :

open(ai, bj, C) = min
p∈P

{
min

h

{
max {Sih(A,C) + Sj|≺h(B,C)}

}}
. (4.12)

With the cap ∆ on the value of S(·), the modified vertical gap open cost due to
a set of other sequences C can be defined as:

Vo(ai, bj) =
γ

2

(
1 + F · avgC∈C{open(ai, bj, C)}

∆

)
, (4.13)

where γ/2 is the unmodified gap open cost.

4.2.4. Support from multiple parameter choices

This section has described a method for computing consistency-modified costs
based on the suboptimality information found in a single alignment for each pair
of sequences. In their MCoffee paper, Wallace et al. [112] described a method
that develops consistency-modified scores based on multiple alignments generated
by multiple software tools. A similar idea can be harnessed internally, generating
pairwise alignments with multiple parameter choices, and computing alignment
feature support from that set of pairwise alignments. The idea is based on the fact
that we don’t know which parameters are optimal for a given input, but hope that
the relatively good parameters will tend to agree, and overwhelm the input of the
few poor parameters. This is related to the underlying motivation of the elision
method [116].

We tested this idea with a wide range of parameter combinations, using up to
10 parameter choices, but found slight degradation in average alignment accuracy
relative to simply using the single parameter choice that performs best.

4.3. Alternate definitions for consistency-modified costs

In the previous section, simple equations (4.7, 4.10, and 4.13) were given for
computing modified alignment costs based on graph-derived suboptimalities. The
equations have explanatory value, but did not perform well in our tests. Alternate
equations are given in this section. The focus of this section will be on computing
modified substitution costs. Equations for computing modified gap costs are not
given, but are easy to derive, essentially by replacing the σ(ai, bj) values with either
λ or γ/2 values, as in the previous section.

We call the various equations consistency blends, because they all aim to
blend unmodified costs for features in an (A ∼ B) alignment with the extent of
suboptimality required of pairwise alignments involving other sequences C in order
to be consistent with those features.
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4.3.1. Imbalanced suboptimality blend variants

The equations from the previous section are what we call the imbalanced maximum
suboptimality blend. For each sequence C ∈ C, the suboptimality sub(ai, bj, C)
comes from the position ch giving the smallest maximum of Sih(A,C) and Sjh(B,C)
(see equation 4.5). These suboptimalities are averaged over all sequences C,
normalized by the maximum suboptimality allowed (∆), and blended with the
unmodified cost of the (A ∼ B) feature to give the modified feature cost.

A similar modification can be called the imbalanced average suboptimality blend.
Under this method, for each sequence C ∈ C, the suboptimality comes from the
position ch giving the smallest average of Sih(A,C) and Sjh(B,C).

sub(ai, bj, C) := min
h

{
Sih(A,C) + Sjh(B,C)

2

}
. (4.14)

The modified feature cost is computed as before.
One problem with these methods is that, when computing a modified cost for a

feature in the alignment graph of (A ∼ B), they fail to account for how suboptimal
that feature of the (A ∼ B) alignment is in its own (unmodified) alignment graph.
This represents an imbalance, where suboptimality is considered only for features in
(A,C) and (B,C) alignments, but not (A,B) alignments. This can be resolved with
a slightly more complicated equation, which imposes a balance between internal and
external suboptimality.

4.3.2. Balanced suboptimality blend variants

Let Sij(A,B) be defined as Sih(A,C) was defined in the previous section, and
capped at a maximum value of ∆. One natural way to insert self-suboptimality
into the equation is by blending it into the numerator of equation 4.7:

D(ai, bj) = σ(ai, bj)

(
1 + F · (1− α) · Sij(A,B) + α · avgC∈C{sub(ai, bj, C)}

∆

)
,

(4.15)
where 0 ≤ α ≤ 1 is a blending coefficient.

Note that this equation now features two tuning coefficients, F and α. A single-
parameter variant that works equally well in our tests is

D(ai, bj) = σ(ai, bj)
(

1 +
Sij(A,B) + F · avgC∈C{sub(ai, bj, C)}

∆ · (1 + F )

)
. (4.16)

If all suboptimalities are zero, the modified cost of the feature will be σ(ai, bj),
while maximal suboptimality will cause the modified feature cost to be doubled.
We call this equation the balanced suboptimality blend, and it can be based on
either the maximum or average suboptimality for each pair (A ∼ C) and (B ∼ C)
(Equations 4.5 and 4.14, respectively).
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4.4. Easing the computational burden

The methods described above for computing consistency-modified feature costs are
computationally demanding. In the default form, run time to compute consistency
costs will be an impractical O(k3n3): for each pair of sequences, (A,B), every other
sequence C is considered, and for each such (A,C,B) triple, all (ai, ch, bj) position-
triples are viewed. This is much more than the practical run times of the related
tools: T-Coffee and ProbCons require time more like O(k3n2), and MAFFT’s takes
time O(k2n2), as discussed in Section 4.1.

Also, in the simple method described in the previous sections, the entire
alignment matrix is stored for each pairwise alignment, in order to compute
suboptimality values. This consumes default space O(k2n2), which is greater than
the O(k2n) space used by MAFFT and T-Coffee to store a single optimal alignment
of each pair. It is also greater than that used by ProbCons, which in principle could
require O(n2) space per alignment to store posterior probabilities for all position
pairs, but in practice consumes less since it maintains a sparse matrix holding only
non-negligible values.

The practical run time for computing consistency costs can be reduced to
O(k2n2) by using two orthogonal ideas: (1) compute consistency-modified scores
based on a fixed-sized set of sequences C, and (2) limit the number of positions ch
that are viewed in searching for ch with minimum suboptimality. Further speed up is
possible if consistency-modified costs are only used for the few alignments performed
near the tips of the guide tree (see Section 2.4) in the progressive alignment method.
As implemented for our experiments, alignment with consistency is quite slow even
with these speedups, taking slightly longer to complete (with no polishing) than
standard alignment with polishing takes.

4.4.1. Computing consistency from C of fixed size

In the methods of T-Coffee and ProbCons, per-position scores for sequence-pair
(A,B) are derived by looking at all other sequences C. This results in a time bound
of O(k3) for constant n. By restricting the number of sequences C that are used to
compute consistency-based costs for (A ∼ B), this bound is reduced. We do this by
creating a subset of C for each pair (A,B), CAB. Then, for example, equation 4.7
can be altered to be

D(ai, bj) = σ(ai, bj)

(
1 + F · avgC∈CAB

{sub(ai, bj, C)}
∆

)
, (4.17)

with other equations altered similarly.
This is a seemingly reasonable thing to do, since the sequences most distant

from A and B can probably not contribute much information about the alignment
of (A ∼ B) that isn’t found in more similar sequences. In other words, sequences C
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that are similar to sequences A and B are more likely to provide accurate support
for features in the alignment (A ∼ B). Based on this observation, our approach is to
compute pairwise distances for all sequences, with d(A,B) equal to the normalized
cost from Section 2.4. Then for each sequence-pair (A,B), the X sequences from
{C − {A,B}} with smallest d(A,C) + d(B,C) are assigned to CAB. In our tests,
we found X = 5 to result in accuracy as high as larger values of X.

Note that it is also possible to assign weights to the contributions of various
sequences to the consistency equations. Since sequences that are more similar
to A and B are more likely to provide accurate signal to their alignment, we
could apply higher weights to the suboptimality values of more similar sequences.
This was not found to improve accuracy. Creating a strict limit to the number of
utilized sequences amounts to a step function for weighting sequences: the closest
X sequences all get weight 1, and others get weight 0.

4.4.2. Computing consistency using a band around optimal
alignments

For a pair of sequences (A,B) and a third sequence C, the default time to compute
consistency-modified feature costs is O(n3) for sequences of length n: for each
position-pair (ai, bj), all positions ch are considered. But the practical runtime can
be reduced by considering a restricted set of positions in C for alignments (A ∼ C)
and (B ∼ C), specifically the positions that are likely to be involved with the least
suboptimal subpath pairs. One way to achieve this is to consider, for a position-pair
(ai, bj), only those positions ch that fall inside a band around optimal alignments
of (A ∼ C) and (B ∼ C). This is sensible, since the support, as in equation 4.5,
comes from the position ch with lowest suboptimality, and positions (ai, ch) that
are far from an optimal alignment (A ∼ C) are unlikely to provide the lowest
suboptimality support levels.

Because there can be more than one optimal scoring alignment (A ∼ C),
the leftmost and rightmost optimal paths in the dynamic programming table are
determined. Then, for each row i in that table (corresponding to position ai), a
left-to-right window is established that extends a few cells to the left of the leftmost
optimal alignment and a few cells to the right of the rightmost optimal alignment.
Note that the window width may be different for each row, depending on the
flexibility of optimal alignments involving each position ai (see Figure 4.5).

One approach to specifying what “a few cells to the left” means is to extend
the window a fixed number of cells w outside the left- and right-most optimal
alignments. An alternative, which we found to be more successful, is to extend the
window as far as possible to include all cells (ai, ch) such that the optimal alignment
constrained to align (ai ∼ ch) has cost no more than a fixed value ∆ higher than
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Figure 4.5: Size of windows in alignment (A ∼ C) that will be used to compute
suboptimality measures to alignment (A ∼ B). Window width may vary for
positions ai, depending on the horizontal range of left-most and right-most optimal
alignments.

the optimal alignment of (A ∼ C). Note that this is the ∆ used as a suboptimality
limit in previous sections. In our experiments, we found ∆ = 150 to result in high
accuracy while limiting computation. With substitution costs ranging between 0
and 88, and the cost of 98 for a gap of length one (see Section 2.9), this allows for
a little flexibility in alignment suboptimality, but does not include alignments that
require multiple clearly erroneous features.

Note that the range of good h-values for the ith row of (A ∼ C) may disagree
with the range of good h-values for the jth row of (B ∼ C). We found that it
was sufficient to search for the lowest suboptimality only the intersection of those
ranges (see Figure 4.6); if the ranges did not intersect, then the suboptimality was
defined as ∆.

In addition to reducing run time, space utilization is reduced as well, based on
the combination of restricting CAB and using suboptimality windows. The default
method would require (possibly infeasible) space O(k2n2) to store the full dynamic
programming table for all pairwise alignments. This can be dramatically reduced
by recomputing alignments (A ∼ C) as they are needed for calculating consistency-
based costs for other alignments (A ∼ B). For each pair (A,B), compute and store
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Figure 4.6: The range used in consistency is the intersection of (A ∼ C) and
(B ∼ C) windows.

the alignments (A ∼ B) and for a small set of C, (A ∼ C) and (B ∼ C), storing
only the portions of those tables falling inside the suboptimality windows. When
X neighboring sequences are used to compute consistency, this will require an X-
fold increase in the number of pairwise alignments performed over the default, but
result in a large storage savings, requiring O(n) space (for fixed X) in practice.

4.4.3. Consistency only for small subtrees

Even with the speedups described above, this method is quite slow for inputs with
more than a dozen sequences. Run time can be reduced substantially if modified
costs are computed for only a fraction of the pairs of sequences. We achieve this
by restricting consistency-based alignment to only those nodes of the progressive
alignment merge tree (see Section 2.4) that involve a small number of sequences.
In other words, consistency-modified costs are used for nodes close to the leaves,
and standard costs for deeper internal nodes. See Figure 4.7 for an example of the
resulting reduction in computation.

We should also note that the fast profile alignment methods described by Gotoh
and Starrett [45, 103] can not be applied when position-pair costs are used, so the
aligning alignments step will tend to grow quadratically with number of sequences,
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Figure 4.7: Number of pairwise alignments performed is reduced by limiting
consistency to nodes near leaves. For example, suppose each pictured subtree
contains 6 sequences. Then if all pairs are computed, the total number of pairs
is 24∗23/2 = 276, but if pairs are only computed within subtrees, then 6 ·5/2 = 15
pairs are computed for each subtree, for a total of 60. If the number of sequences is
doubled to 48, but the same threshold retained (thus doubling the number of size-6
subtrees), then the number of computed pairwise alignments will be reduced from
1128 to 120.

rather than linearly. By limiting the size of alignments in which consistency is
used, the fast profile methods can be used for the large alignments formed at deep
internal nodes.

This form of tree-restricted consistency is necessary to achieve acceptable speed,
but also seems well-motivated. The purpose of using consistency modified costs is
to avoid making errors early in the progressive alignment process. Once alignments
being merged have reached sufficient size, there should be enough signal in those
alignments to overcome the need for external influence on alignment costs. When
no polishing is used, we found that there was effectively no benefit in our scheme to
using consistency on subtrees larger than 6 sequences. However, our experiments
(Section 4.6) show that restricting consistency to subtrees results in conflicts with
polishing.

4.5. Incorporating consistency-modified costs into the algorithm for
aligning alignments

It is a straightforward exercise to incorporate consistency-based costs into the
algorithm for aligning two sequences, and into the pessimistic heuristic for aligning
alignments (see Section 2.5 and [64]), replacing the matrix-derived substitution
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Figure 4.8: Shapes in a two-sequence alignment

costs and fixed gap costs λ and γ with the modified variants described in Sections 4.2
and 4.3. Modifications of the algorithm for aligning alignments optimally (with
exact gap counts, see Section 2.5 and [63, 103]) are only slightly more complicated.
Here we discuss details of that algorithm only in the depth required to see the
modifications necessary to incorporate consistency. See Section 2.5 and [64, 63,
103] for more details.

The algorithm for exactly aligning alignments follows a standard dynamic
programming approach, and can be described as it relates to aligning two sequences.
In aligning two sequences under affine gap costs, a subproblem (i, j) corresponds to
prefixes (a1 . . . ai) and (b1 . . . bj) of sequences A and B, and a shape that represents
the relative ordering of the final characters of the two prefixes. The flat shape
(Figure 4.8a) indicates that ai is aligned to bj (a substitution). The overhanging
shape (Figure 4.8b) corresponds to a run of characters from A ending in ai aligning
to a gap between positions bj and bj+1; an overhang is a run of vertical edges in
the dynamic programming table. The underhanging shape (Figure 4.8c) similarly
corresponds to a run of characters from B in a (horizontal) gap. A direct result
of the dynamic programming recurrence is that, when filling in a matrix with the
costs of solutions to these subproblems from the upper-left portion of the matrix to
lower-right portion is that, for each of the three shapes, only the cost of the cheapest
path (alignment of prefixes) ending in that shape in that cell need be retained. This
is effectively a pruning method: rather than keep track of all alignments of prefixes
(a1 . . . ai) and (b1 . . . bj), only one for each shape is tracked.

In the problem of aligning two alignments, the alignments A and B are
viewed as sequences of columns, and a subproblem consists of prefixes of the
two alignments, along with the shape leading to those prefixes. As in pairwise
alignment, shapes describe the relative order of occurrence of the most-recent letter
in each sequence. Multi-sequence shapes are more complicated, as sequences within
an alignment may have gaps relative to other sequences in the alignment. See
Figure 4.9 for an example.

The difficulty in aligning alignments optimally is in correctly computing the
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Figure 4.9: Multiple sequence shape.

per-gap cost of an alignment as it is extended in the dynamic programming matrix.
Using standard costs, this amounts to correctly counting the number of gaps opened
by a new column in the alignment. Shapes are the key to determining whether a
column starts a gap in a pair of rows: for example, if a new column appends a
letter from A against a gap in B, the effect is to create an overhang. If that column
is appended to a shape that is not already an overhang (Figure 4.8b), then a new
gap (a,−) has been opened.

As in the two-sequence method, a sort of rudimentary pruning is possible: many
paths may result in the same shape at a given cell in the dynamic programming
matrix, but it is simple to ensure that each shape retained in that cell represents
the cheapest path leading to that cell and ending at that shape. But more effective
pruning of shapes is possible, as well; if it can be shown that a shape s can not
possibly lead to an optimal alignment, then that shape may be pruned immediately.
Two such improved pruning techniques are described in the work of Kececioglu
and Starrett [63, 103], bound pruning and dominance pruning. These require
special attention in terms of how they incorporate consistency-modified costs. The
descriptions below present the issues in terms of two-sequence shapes induced by
a multi-sequence shape; this is natural, as alignment costs are based on sum-of-
pairwise costs.

4.5.1. Bound pruning

The bound pruning method uses heuristic alignments to establish bounds to support
shape pruning. First, a heuristic alignment is performed on the reversed alignments
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Figure 4.10: Stitching shapes for bound pruning. When considering cost of
extending a shape from the left with a shape from the right, additional costs may
be incurred.

A and B. Think of this as building an alignment from the bottom-right up to the
top-left on the un-reversed alignments. The heuristic used is the optimistic gap-
count heuristic [63], in which per-gap costs are counted only when it is clear that a
new gap has been formed. At each cell (ai, bj) in the dynamic programming table,
these (optimistic) costs provide a lower bound on the cost of aligning the suffixes
(ai . . . am) and (bj . . . bn). These suffix-alignment lower bounds can be used to
establish cost bounds on extending alignments of prefixes (in the forward direction).

The true cost of this heuristic alignment is then computed. Since it is a feasible
alignment, this represents an upper bound on the optimal cost of an alignment (in
practice, a pessimistic heuristic alignment is also performed, since this tends to
have lower cost).

In the optimal alignment algorithm, the general step is to consider a shape s
in cell (i, j), where the cost of the cheapest alignment at that cell ending in that
shape is c(i, j, s). The idea is to find a lower bound on the cost of extending s into
a complete alignment; if that lower bound exceeds the previously established upper
bound (from the optimistic or pessimistic heuristic), then s may be discarded.

At cell (i, j), there are three possible ways to begin the extension: right, down,
and diagonally down/right. The reverse alignment described above establishes a
lower-bound on the cost of extension in each direction, so a lower-bound on total
cost can be established by adding the cost of s (which is the exact cost of the
optimal alignment of prefixes leading to that cell with that shape) to the lower
bound on cost of extension in each direction.
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In the normal (non-consistency) scoring scheme, the per-gap cost was imple-
mented as a single gap-open cost γ. Thus, when an overhang in shape s is extended
into a similarly overhanging shape from the reverse alignment (Figure 4.10a), both
shapes had already incurred a per-gap cost. This required that the bound be
corrected by reducing the summed costs based on possible gap-open overcharges.
This issue it avoided by splitting the per-gap cost into gap-open and gap-close
costs, each γ/2. With these split-gap costs, no overcounting is possible, either in
the standard or consistency-modified scoring schemes. With these split costs comes
a new requirement: to keep the bound as tight as possible, all possible gap-close
(Figure 4.10b) and gap-open (Figure 4.10c) costs are now added to the lower-bound
on the cost of extending a shape.

4.5.2. Dominance pruning

If two paths to the same cell end in the same shape, then the one with lower cost
can be said to dominate the other: because the two shapes will incur identical costs
for any possible extension, there is no way that the more expensive path to that
shape can lead to an alignment with a cheaper cost. A dominated path can then
be discarded while still guaranteeing that an alignment with optimal cost will be
found.

This notion can be generalized to comparing different shapes. For two shapes in
a cell, s and t, if there is no possible path through the remainder of the alignment
graph that will cause the cost of t extended through that path to be less than the
cost of s extended through that path, then s can be said to dominate t, and t can
be discarded. It is not enough that c(i, j, s) < c(i, j, t), because it is possible that
some path will force s to incur a new cost that t does not incur (s opens a gap that
t already has open, or s closes a gap that isn’t open in t), thus causing the cost of
extending s to rise relative to the cost of extending t. A bound on potential excess
gap-open costs for s can be computed by counting the number of pairs for which
t has an open gap that s does not have (Figure 4.11a). A similar accounting for
excess gap-close costs can be made, by counting the pairs for which s has an open
gap where t does not (Figure 4.11b).

Let B be the sum, over all pairs of sequences, of all such possible gap-open or
gap-close costs incurred by s and not t (Figures 4.11a and 4.11b). Then s dominates
t if c(i, j, s) +B ≤ c(i, j, t). Thus, dominance is an easily-tested sufficient condition
for t to be no better than s.

4.6. Experimental results

The accuracies of the blend methods described in the Section 4.3 are compared
in Table 4.1. The methods were implemented in Opal, and experiments were
performed as in Chapter 2 (using benchmarks BAliBASE, PALI, and SABmark;



86

73 

Dominance and hydrophobicity 

s 
a 

- 

------ 
t 

a 

- 
(a) Extra gap-open cost.

74 

Dominance and hydrophobicity 

t 
a 

- 

------ 
s 

a 

- 

(b) Extra gap-close cost.

Figure 4.11: Extra gap-open and gap-close costs in dominance pruning. For two
shapes s and t, each pair of sequences with induced pairwise shapes shown here
cause the cost of s to grow, relative to the cost of t. In (a) the cost growth is the
cost of opening a gap. In (b) the cost growth is the cost of closing a gap.

measuring accuracy with the SPS and TC scores). Inputs with no more than 50
sequences were used, due to excessive run time for the algorithm as implemented.
A range of blend factors (the F value) were tested, and results shown are under
the best F for each method. Consistency was computed only on subtrees of 6 or
fewer sequences, with larger subtrees aligned under standard scoring. Consistency
support was gathered from 5 nearest neighbors for each pair (A,B), and ∆ = 150
was used in all cases. The methods are compared to default alignment in Opal,
with no polishing. The balanced maximum suboptimality method was found to
perform best. Results presented in Section 2.8 indicate that the gains were roughly
the same as gains from polishing, and consistency and polishing did not work well
together.

One valid concern about these tests is that the observed success of basing
consistency-modification on 5 related sequences may be due to the constraint
placed on the number of sequences in tested inputs. We addressed this concern
by using a similar methodology with MAFFT at the core. Because MAFFT’s method
is much faster, all inputs from PALI and BAliBASE with more than 60 sequences
could be tested (SABmark has no inputs of that size). After computing a guide
tree, all subtrees with no more than X sequences were aligned with MAFFT’s
local-alignment-based consistency method (L-INS-1), while all internal nodes with
subtrees containing more than X sequences were aligned using MAFFT’s profile
alignment with unmodified parameters. Table 4.2 shows accuracy results over a
range of values for X. Recovery as measured by SPS leveled off at X = 15, though
it is interesting to note that the TC recovery values continued to grow with X, and
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Table 4.1: Comparison of consistency methods. All results are without polishing.

Consistency method BAliBASE SABmark PALI average

balanced maximum (F=1.9) 84.3 / 56.7 49.9 84.7 / 59.6 73.0 / 58.2

balanced average (F=3.0) 83.9 / 56.4 49.2 84.8 / 60.0 72.6 / 58.2

imbalanced maximum (F=1.0) 83.1 / 55.3 45.7 84.3 / 58.7 71.0 / 57.0

imbalanced average (F=1.0) 82.9 / 55.1 45.1 84.2 / 59.1 70.7 / 57.1

no consistency 82.5 / 52.7 48.5 83.8 / 57.1 71.6 / 54.9

even X = 40 didn’t attain TC values as high as using consistency for all inputs.
The results described so far are for consistency without polishing. In Section 2.8,

it was reported that accuracy was reduced when polishing was applied to a
consistency-based alignment. It is instructive to understand if this is true for other
methods as well. Tables 4.3 and 4.4 show the recovery gains due to consistency and
polishing on the same inputs as in Table 4.1, for MAFFT and ProbCons respectively.
Both tools experience additive gains in accuracy by combining consistency and
polishing, with ProbCons getting a small (< 1%) gain in both SPS and TC
score over just consistency, while MAFFT’s gains were 2% and 3% in SPS and TC
respectively.

To understand why these tools see gains in combining the methods, while Opal

experiences a reduction in quality, it is important to remember how the Opal

model works: consistency-modified costs are used when building alignments in
small subtrees of the full guide tree, but standard (unmodified costs) are used for
both deep internal nodes and for polishing. This partitioning of consistency was
used because the computational burden of Opal’s model was excessive for larger
trees. The conjecture that this approach would still work well was rooted in the idea
that using consistency on small trees would help avoid errors when information was
sparse, but that information contained by larger alignments would be sufficient to
overcome the need for consistency. However, it appears that this is likely the cause
of the poor relationship between consistency and polishing. An analogous idea
is to build a full alignment with MAFFT using consistency, then to apply MAFFT’s
standard-parameter (non-consistency) polishing to that alignment. When that was
done, accuracy was worse than polish-free consistency-based alignment (results not
shown). This, along with similar results in our model, suggests that polishing
and consistency can cooperate effectively only if the parameters used to polish are
the same ones used in computing an initial consistency-based alignment. When
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Table 4.2: Accuracy of method using MAFFT’s consistency approach (linsi) on small
subtrees of the guide tree, and unmodified profile alignment on deep internal nodes.
No polishing was used. Results shown for the 26 inputs from BAliBASE and PALI

containing at least 60 sequences.

which internal-node alignments performed with consistency SPS TC

no consistency (fftns1) 90.8 40.6

subtrees ≤ 5 sequences 90.5 39.5

subtrees ≤ 6 sequences 91.4 41.2

subtrees ≤ 7 sequences 91.4 41.2

subtrees ≤ 8 sequences 90.8 40.8

subtrees ≤ 9 sequences 91.0 42.6

subtrees ≤ 10 sequences 91.0 43.3

subtrees ≤ 11 sequences 91.5 41.9

subtrees ≤ 12 sequences 91.6 43.5

subtrees ≤ 13 sequences 91.7 44.5

subtrees ≤ 14 sequences 92.1 42.4

subtrees ≤ 15 sequences 92.1 44.4

subtrees ≤ 16 sequences 91.9 44.9

subtrees ≤ 17 sequences 91.9 45.0

subtrees ≤ 18 sequences 91.9 45.1

subtrees ≤ 19 sequences 91.9 44.5

subtrees ≤ 20 sequences 92.1 43.5

subtrees ≤ 25 sequences 92.5 48.5

subtrees ≤ 30 sequences 91.2 49.7

subtrees ≤ 35 sequences 91.5 51.3

subtrees ≤ 40 sequences 91.3 49.2

all (lins1) 92.1 54.4
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Table 4.3: Impact of using global- and local-sequence alignments in computing
consistency-modified scores in MAFFT.

MAFFT variant BAliBASE SABmark PALI average

no consistency, no polish 77.8 / 47.4 42.0 79.2 / 50.2 66.3 / 48.8

with consistency, no polish 82.8 / 55.4 44.1 82.8 / 56.1 69.9 / 55.8

with consistency, with polish 84.6 / 59.2 46.2 84.0 / 59.2 71.6 / 59.2

Table 4.4: Impact of using consistency-modified scores in ProbCons.

ProbCons variant BAliBASE SABmark PALI average

no consistency, no polish 79.7 / 49.1 44.3 81.7 / 52.8 68.6 / 50.1

with consistency, no polish 83.0 / 56.4 46.7 84.3 / 59.2 71.3 / 57.8

with consistency, with polish 83.7 / 57.1 47.1 84.5 / 59.3 71.8 / 58.2

the polishing parameters differ from the initial-alignment parameters, the gains of
consistency may be broken by polishing without getting sufficient return in the
form of polishing-based improvement.
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PART 2 LARGE-SCALE NEIGHBOR-JOINING PHYLOGENIES
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CHAPTER 5

BACKGROUND ON NEIGHBOR-JOINING

The neighbor-joining method of Saitou and Nei [95] is a widely-used method
for constructing phylogenetic trees, owing its popularity to good speed, generally
good accuracy [81], and proven statistical consistency (informally: neighbor-joining
reconstructs the correct tree given a sufficiently long sequence alignment) [35]. In
particular, it has been highlighted as a valuable method for inferring very large
phylogenies [108], due to its combination of speed and accuracy.

Neighbor-joining is a hierarchical clustering algorithm. It begins with a distance
matrix, where dij is the observed distance between clusters i and j, and initially
each of the n input sequences forms its own cluster. Neighbor-joining repeatedly
joins a pair of clusters that are closest under a measure, qij, that is related to the
dij values. The canonical algorithm [105] finds the minimum qij at each iteration
by scanning through the entire current distance matrix, requiring Θ(r2) work per
iteration, where r is the number of remaining clusters. The result is a Θ(n3) run
time, using Θ(n2) space. Thus, while neighbor-joining is quite fast for n in the
hundreds or thousands, both time and space balloon for inputs of tens of thousands
of sequences.

As a frame of reference, there are 8 families in Pfam [37] containing more than
50,000 sequences, and 3 families in Rfam [49] with more than 100,000 sequences,
and since the number of sequences in GenBank is growing exponentially [41], these
numbers will certainly increase. Phylogenies of such size are applicable, for example,
to large-scale questions in comparative biology (e.g. [100]).

In this part of the dissertation, a new algorithm is described that produces a
correct neighbor-joining phylogeny, and achieves increased speed by restricting its
search for the smallest qij at each iteration to a small portion of the quadratic-sized
distance matrix. The key innovations of this algorithm are (1) introduction of a
search-space filtering scheme that is shown to be consistently effective even in the
face of difficult inputs, and (2) inclusion of data structures that efficiently use disk
storage as external memory in order to overcome input size limits.

The result is a statistically consistent phylogeny inference tool that is roughly
an order of magnitude faster than a very fast implementation of the canonical
algorithm, QuickTree (for example, calculating a neighbor-joining tree for 60,000
sequences in less than a day on a desktop computer), and is scalable to hundreds
of thousands of sequences. The algorithm is implemented in a tool called NINJA,
freely available at http://nimbletwist.com/software/ninja.
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5.1. Canonical neighbor-joining algorithm

Neighbor-joining [95, 105] is a hierarchical clustering algorithm. It begins with a
distance matrix, D, where dij is the observed distance between clusters i and j, and
initially each sequence forms its own cluster. Neighbor-joining forms an unrooted
tree by repeatedly joining pairs of clusters until a single cluster remains. At each
iteration, the pair of clusters merged are those that are closest under a transformed
distance measure

qij = (r − 2) dij − ti − tj , (5.1)

where r is the number of clusters remaining at the time of the merge, and ti is the
total distance of cluster i to all other clusters:

ti =
∑

k

dik . (5.2)

When the {i, j} pair with minimum qij is found, clusters i and j are joined by a
new parental node, which now represents cluster ij, and the length of the edge from
i to the parent node is

bi =
1

2

(
dij +

ti − tj
(r − 2)

)
, (5.3)

while the length of the edge from j to the parent node

bi =
1

2

(
dij +

tj − ti
(r − 2)

)
. (5.4)

D is updated by inactivating both the rows and columns corresponding to clusters i
and j, then adding a new row and column containing the distances to all remaining
clusters for the newly formed cluster ij. The new distance dij|k between the
cluster ij and each other cluster k is

dij|k =
di|k + dj|k − di|j

2
. (5.5)

There are n-1 merges, and in the canonical algorithm each iteration takes time
Θ(r2) to scan all of D. This results in an overall running time of Θ(n3).

Note that it is possible for one of each pair of branch lengths to gain a negative
length based on formulas 5.3 and 5.4; this is problematic since the length of an
edge represents the extent of sequence evolution occurring along that edge, which
should be non-negative. It has been suggested that the branch with negative length
should be set to length zero, and the sibling branch shortened an equal amount.
This does not alter the topology of the tree (Kuhner and Felsenstein, 1994).

Also note that it is possible that more than one pair will share the same
minimum q value. It appears to be common to make an arbitrary choice, though
it is certainly possible to choose randomly (an option in [98]), and repeat analysis
of the input multiple times to measure robustness of resulting trees.
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5.2. Properties of neighbor-joining

Numerous studies have demonstrated neighbor-joining’s efficacy in recovering
accurate phylogenies [67, 81, 104, 69], and in particular, Tamura et al. [108]
observed very little reduction in accuracy as the number of sequences grows into
the thousands. (It should be noted that accuracy results in phylogenetics depend
on simulation studies, since the true evolutionary history or real sequences is
unknowable.)

Neighbor-joining takes as input a matrix of estimated pairwise distances, and
constructs a tree such that the pairwise distances induced by that tree are close
to the input distances. Input distances are estimated from observed sequence
data, usually based on a probabilistic model of sequence evolution. These models
are statistically consistent in the sense that they converge on the true distance
with sufficiently long sequences and a correct model of sequence evolution [35].
Neighbor-joining, which is known to correctly recover trees when pairwise distances
are in agreement with the true tree (these are known as additive, or tree-like,
distances) [39] is statistically consistent as well.

In practice, the model of sequence evolution may be wrong, and distances are
calculated on finite-length sequence, meaning computed distances are subject to
statistical error. It is therefore important to understand how neighbor-joining deals
with erroneous estimated pairwise distances. Consider the true tree under which
the sequences evolved. The edge lengths of that tree induce a distance between each
pair of sequences: the sum of the length of edges on the path between the leaves
corresponding to those two sequences. Call these the true-tree-induced distances.
The estimated pairwise distances may differ from these true distances, so we desire
a method that is robust to large errors. Atteson [5] showed that neighbor-joining
will recover the correct tree if the largest error among all pairwise distance estimates
is at most 1/2 the length of the shortest edge in the true tree. Distances that are
close in this way to the true-tree-induced distances are called “nearly-additive”. The
ratio of allowed disagreement from true-tree-induced distances to minimum edge
length is called the reconstruction radius; neighbor-joining has a radius of 1/2. This
reconstruction radius has been shown to be optimal for distance methods [31].

The reconstruction radius indicates robustness in the face of distance estimation
error, but seems to be of little practical value for moderate size real-world problems,
where a near-zero-length branch is quite likely to be found somewhere in the true
tree. A more valuable result from Mihaescu et al. [77] is the related notion of an
edge radius, wherein neighbor-joining is guaranteed to correctly recover every edge
with length at least 4x as large as the largest distance error. This is shown in the
same work to be optimal. Thus, even though distance estimation error may cause
neighbor-joining to fail in finding the correct tree, only short edges will be missed.
(It should be noted that these short edges are not guaranteed to be missed, and
are often correctly recovered despite the lack of guarantee [77]).
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Gascuel [39] showed that formula 5.5 can be replaced with a formula that
differentially weights the contributions of di|k and dj|k to dij|k, while still retaining
neighbor-joining’s desirable properties. His approach is to assign weights that
are dependent on sampling variance of distance estimates, such that the distance
with higher variance (which is thus a less reliable estimate of the true distance)
is down-weighted. He also shows that sampling variance can be reasonably
approximated when distances are estimated from aligned sequences. This approach
was implemented in a tool called BioNJ, which reportedly improved the accuracy
of tree estimation from sequence data, on simulated data.

Bryant [13] showed that the selection criterion (formula 5.1) is the unique such
criterion satisfying the requirements of being linear, unaffected by order of input,
statistically consistent, and based solely on distance data.

5.3. Prior methods

QuickTree [54] is a very efficient implementation of the canonical neighbor-joining
algorithm. Due to low data-structure overhead, it is able to compute trees up to
nearly 40,000 sequences before running out of memory on a system with 4GB of
RAM. QuickJoin [76, 75], RapidNJ [99], and the bucket-based method of [119] all
produce correct neighbor-joining trees, reducing run time by finding the globally
smallest qij without looking at the entire matrix in each iteration. While all methods
still suffer from worst-case running time of O(n3), they offer substantial speed
improvements in practice. Unfortunately, the memory overhead of the employed
data structures reduces the number of sequences for which a tree can be computed.
For example, on a system with 4GB RAM, RapidNJ scales to 13,000 sequences, and
QuickJoin scales to 8000. No implementation of [119] was found.

The focus of this work is on exact neighbor-joining tools, but we briefly mention
other methods for completeness. Alternate methods for phylogeny inference include
parsimony, maximum-likelihood, Bayesian, and minimum evolution. Parsimony
and maximum-likelihood (ML) use local-search heuristics to seek good trees, while
the Bayesian method samples from the probability landscape. Bayesian methods
(e.g.[92, 27, 107]) are unable to handle inputs on the scale of thousands of sequences.
Recent advances in parsimony [43] and ML [102] methods have greatly improved
the size of problems that can be handled by these methods, and the speed with
which trees can be inferred. The largest published tree inferred by either of those
methods contains 73,060 taxa [42], which reportedly took 2.5 months of processor
time.

Relaxed [32] and fast [31] neighbor-joining are neighbor-joining heuristics that
improve speed by choosing the pair to merge from an incomplete subset of all
pairs. Both will return the same tree as neighbor-joining when distances are
additive. Fast neighbor-joining shares the same reconstruction radius with exact
neighbor-joining [77], and runs in time O(n2), but was observed to be slightly
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less accurate than neighbor-joining [31], suggesting a lack of robustness when that
radius is violated. An implementation of the relaxed neighbor joining heuristic,
ClearCut [98], is nearly an order of magnitude faster than NINJA on very large
inputs, but also shows reduced accuracy.

Minimum-evolution (ME) methods offer an alternate fast approach. Under the
ME framework, edge lengths for a fixed topology are those that minimize the sum
of the squares of the differences between the input pairwise distances and those
induced by the tree’s edge lengths. The minimum-evolution tree is the tree with
topology minimizing the sum of edge lengths. Saitou and Nei [95] described their
neighbor-joining method as working “under the principle of minimum evolution”,
and it has been proven to be a greedy heuristic for finding the balanced minimum
evolution tree [40].

Minimum-evolution with the SPR [53] local-search improvement method has
proven reconstruction radius of 1/3 [10], and consistency (though not a recon-
struction radius > 0) has been conjectured for ME with the NNI [22] local-search
improvement method. A recent implementation of a minimum-evolution heuristic
with NNI, FastTree [90], is notable for constructing accurate trees on datasets of
the scale discussed here, with speed more than 10-fold greater than that achieved
by NINJA on very large inputs.
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CHAPTER 6

DATA STRUCTURES AND ALGORITHMS FOR SCALING UP
NEIGHBOR-JOINING

In this chapter, we describe a two-tiered filtering regime that dramatically
reduces the number of distance values that are viewed during the search for the
minimum qij value at each iteration, relative to a complete scan of the distance
matrix. In addition, the method overcomes memory constraints seen in earlier
filtering-based work by incorporating external-memory-efficient data structures into
the algorithm.

6.1. Restricting search of the distance matrix

6.1.1. The d-filter

A valid filter must retain the standard neighbor-joining optimization criterion at
each iteration: merge a pair {i, j} with smallest qij. To avoid scanning the entire
distance matrix D, the pairs can be organized in a way that makes it possible to
view only a few values before reaching a bound that ensures that the smallest qij
has been found.

To achieve this we use a bound that represents a slight improvement to that
used in RapidNJ [99]. In that work, ({i, j}, dij) triples are grouped into sets, sorted
in order of increasing dij, with one set for each cluster. Thus, when there are r
remaining clusters, each cluster i has a related set Si containing r−1 triples, storing
the distances of i to all other clusters j, sorted by dij. Then, for each cluster i, Si

is scanned in order of increasing dij. The value of qij is calculated (equation 5.1)
for each visited entry, and kept as qmin if it is the smallest yet seen.

To limit the number of triples viewed in each set, a second value is calculated
for each visited triple, a lower bound on q-values among the unvisited triples in the
current set Si: qbound = (r − 2) dij − ti − tmax, where tmax = maxk{tk}. In a
single iteration, tmax is constant, and for a fixed set Si, ti is constant and the sorted
dij values are by construction non-decreasing. Thus, if qbound ≥ qmin, no unvisited
entries in Si can improve qmin, and the scan is stopped. After this bounded scan of
all sets, it is guaranteed that the correct qmin has been found. This is the approach
of RapidNJ.

Improving the d-filter While this method is correct, and provides dramatic
speed gains [99], it can be improved. First, observe that the bound is dependent
on tmax, which may be very loose (see fig. 7.2a). One way to provide tighter
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bounds is to abandon the idea of creating one list per cluster. Instead, the interval
(tmin, tmax) is divided into evenly spaced disjoint bins, where each bin Bx covers the
interval [Tmin

x , Tmax
x ). For X bins, then, the size of the interval between min and

max values will be (tmax− tmin)/X (the default number of bins is 30). Each cluster
i is associated with the bin Bx for which Tmin

x ≤ ti < Tmax
x . Adopt the notation

that cluster i’s bin B(i) = x. Note that bins may contain differing numbers of
clusters. Then create a set S{x,y} for each bin-pair {Bx, By}.

Now, instead of placing ({i, j}, dij) triples into per-cluster sets as before, place
them in per-bin-pair sets S{B(i),B(j)}, still sorting triples within a set by increasing
dij. To find qmin, traverse the sets, scanning through each as before, but now
calculating the bound based on current triple ({i, j}, dij), taken from set S{x,y}, as

qbound = (r − 2) dij − Tmax
x − Tmax

y . (6.1)

This improves the filter because, for an unvisited pair {i′, j′} from the same set
S{x,y}, setting ρ = (r − 2) di′j′ , ρ− Tmax

x − Tmax
y will usually be a tighter bound on

qi′j′ than is ρ− ti′ − tmax.

Updating data structures After merging clusters i and j, the rows and columns
associated with those clusters are inactivated in D, and a new row and column are
added for the merged cluster ij. Entries in the sets also require update. The
new cluster, ij, is associated with the bin B(ij) = argminx{Tmax

x > tij)}. Triples
({ij, k}, dij|k) for distances to each remaining cluster are added to the appropriate
sets, S{B(ij),B(k)}. Triples for the removed clusters i and j are removed from sets in
a lazy fashion: i and j are marked as retired, and when triples involving either i or
j are encountered while scanning sets in future iterations, they are removed.

While this method provides tighter qbound values than the method of keeping one
set per cluster, these bounds will tend to loosen over time. Before any merges are
performed, the intervals of these sets are non-overlapping, but because the change in
tk after a merge may be different for each cluster k, this non-overlapping property is
no longer guaranteed to hold after a merge is performed. The result is a loosening
of the value Tmax

x as a bound for ti for an arbitrary cluster (i.e. the difference
between the true value and the bound may be greater than (tmax − tmin)/X). The
loosening of the bound grows as iterations pass, though it is still tighter than the
per-cluster bound until the set ranges overlap almost completely.

It may seem appealing to move a cluster to a new bin when that bin could
provide a tighter bound, but doing so would incur substantial work to take all
corresponding triples out of the various bin-pair sets. The strategy taken by NINJA

is to occasionally rebuild the sets from scratch. For a constant K > 1 (the default
is K = 2), the sets are rebuilt after r/K merges have been performed since the
last rebuild, where r is the number of clusters remaining at the time of that prior
rebuild. Overall runtime for these set constructions is dominated by the time of the
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first construction, O(n2 log n). This process of regularly rebuilding data structures
resembles that used in [76].

6.1.2. Overcoming memory limits

The size of D is quadratic in the number of sequences, as is the size of the sets
of triples described above. If these structures grow to exceed available RAM, an
application may either abort or store the structures to external storage (i.e. disk).
Data in RAM may be accessed in random patterns without concerns about speed,
but reading and writing data on disks is done in large chunks (called disk blocks)
of several kilobytes. The dramatic difference in latency between disk and RAM
access (on the order of 106-fold difference [87]) means that it takes effectively the
same amount of time to access a single value from disk as it takes to access all the
values stored in a disk block. This necessitates I/O-efficient algorithms if external
storage is to be used. We describe methods for efficiently handling both the sets
S{x,y} and the distance matrix.

Bin-pair sets in external memory The set of triples associated with each bin
pair set S{x,y} has been described as a sorted list. In fact, in order to allow fast
insertion of triples for new clusters, such a list would likely be implemented as a
data structure such as a binary search tree [66]. Binary search trees have poor I/O
behavior when stored to disk, but could be easily replaced by a B-tree [8] or B+
tree, which allow for logarithmic number of disk I/Os for both insertions and reads.

However, since only a small portion of the entries in a set are accessed, the effort
of keeping a totally ordered data structure is unnecessary. A min-heap [20] provides
the tools necessary to scan through increasing dij, with less overhead since it only
need keep a partial order. NINJA implements an external memory array heap [12],
keyed on dij. This heap structure can store more triples than would fill a 1TB hard
drive while maintaining a memory footprint smaller than 2MB, and guarantees an
amortized number of I/O operations for insert and extract-min operations that is
logarithmic in the number of inserted triples. One heap is used for each set S{x,y}.

Distance matrix in external memory Though the heaps are used to identify
the cluster pair {i, j} to merge, the distance matrix D should still be maintained.
After a merge, dij|k is calculated for every cluster k. From equation 5.5, we see that
we must view dik and djk for every k, which is more efficiently done by traversing
the rows and columns for i and j in D than by scanning through the heaps.

Since neighbor-joining assumes a symmetric D, an efficient way to store D for
in-memory use is to keep only its upper-right triangle: distances for cluster i are
spread across row i and column i, such that all reside in the upper triangle. When
a pair of clusters {i, j} is merged, a new row and column are said to be added, but
no additional space is actually required: the distances of the new cluster ij to all
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remaining clusters k can be stored in the cells previously belonging to one of the
retired clusters, say i, so dij|k is stored in the cell where dik was stored. Clusters i
and j are noted as retired, and the mapping of cluster ij’s stored location is simple.

However, when D is stored to disk, this approach will lead to poor disk paging
behavior, because values for cluster i are split between row i (which can be accessed
efficiently from disk, with many consecutive values per disk block), and column i
(which will be spread across the disk, with typically one value per disk block).
Therefore, a modification is required. For an input of n sequences, a file F stores
a matrix with 2n columns and n rows. The full initial D (i.e. both the upper and
lower triangles) is stored to F , filling the first n columns of each row. When a
merge is performed, and new distances are calculated, the values dik and djk can
be gathered by sweeping through rows i and j, allowing the number of distance
values that fit in a disk page to be gathered at the cost of a single disk access. The
mapping for the storage location of the new dij|k values will be different for rows
and columns: if ij is formed as the result of the pth merge, then it will map to the
row in F where i was stored, but will fill a new column n+ p− 1. Newly calculated
distances are not immediately stored to disk, instead waiting until enough values
have been calculated to allow for efficient disk I/O. Suppose b distance values fit in
a disk block: then dijs for new clusters are appended to a b x n in-memory matrix
M until all b columns of that matrix are full. At that time, each row of M is
appended to the same row in F (requiring one disk I/O per row), and each column
is translated and written into the mapped row in F (requiring up to dn/be I/Os).

6.2. Candidate handling

Due to the nature of heaps, all viewed ({i, j}, dij) triples are removed from their
containing heaps during the search for qmin; call these the candidates. The d-filter
method described in Section 6.1 dramatically reduces the number of candidates
viewed in most cases, but inputs with relationships like those seen in Figure 7.2a
reduce the efficacy of d-filtering, for reasons described in Section 7.1. Examples of
the impact on run time are given in Table 7.2c.

Below, a second level of filtering, called the q-filter, is described. It works by
sequestering candidates passing the d-filter, and organizing them in a way that
allows a new bound to limit the number of those candidates that are viewed in
each iteration.

q-filter on a candidate heap Let qij(p), r(p), and ti(p) correspond to the values of
qij, r, and ti at a fixed previous iteration p. And let δi(p) = (r−2)ti(p)−(r(p)−2)ti.
Then it is easy to show that, for the current iteration,

qij =
(r − 2) qij(p) + δi(p) + δj(p)

r(p)− 2
. (6.2)



100

Suppose all candidates on hand at iteration p are stored as ({i, j}, qij(p)) triples
in a candidate set, sorted according to their qij(p) values. Assign the current r and ti
as r(p) and ti(p) for that set. Since relative q-values change by small amounts from
one iteration to the next, the {i, j} pair with the smallest qij at a future iteration
is likely to be near the front of this sorted list. It can be found by initializing qmin

to ∞, then scanning candidates in order of increasing qij(p), updating qmin when
an entry with a smaller qij is found.

Let S be the set of all clusters with at least one representative in the candidate
set, and define

∆max(p) := max
i,j ∈ S

i 6=j

{δi(p) + δj(p)} . (6.3)

Then scanning of this sorted list may be stopped when an element is found with

(r − 2) qij(p) + ∆max(p)

r(p)− 2
≥ qmin . (6.4)

The candidate set can be large enough to exceed memory for very large inputs,
and because only a partial order is required, NINJA stores the contents of the
candidate set in an external memory heap array, as described for the d-bound bin-
pairs in Section 6.1. The heap formed from such candidates is called a candidate
heap.

Candidate heap chain Adding a new candidate to a candidate heap created in a
previous iteration pa (with associated r(pa) and ti(pa) values) is problematic: (1) if
the candidate involves a cluster j that was formed after pa, then qij(pa) and tj(pa)
are undefined, and (2) even if both clusters existed before pa, the candidate would
need to be stored on the heap with a back-calculated qij(pa) (and thus looser than
necessary bounds) to retain sensible δ-values.

NINJA overcomes this problem by keeping a chain of candidate heaps. At
initiation, there are no candidates. In each iteration, newly gathered candidates
from the d-filter are placed in a single candidate pool. When the size of that
pool exceeds a threshold (default is 50,000; it should be fairly large because
of the overhead required to form an external memory array heap), a candidate
heap is created and populated with the triples in the pool, and the pool is then
emptied. As more candidates are gathered, they are again stored in the pool, until it
exceeds threshold, at which time a second candidate heap is formed, filled from the
candidate pool, and linked to the first. This is repeated until the tree is complete.
This results in a chain of candidate heaps. The chain is destroyed when bin-pair
heaps are rebuilt (Section 6.1.1).

At each iteration, these heaps are scanned for elements with small qij by
removing triples until the bound (6.4) is reached. Those viewed triples with
qij > qmin are placed in the candidate pool, rather than being returned to their
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source candidate heap, because the δ-bound usually gets looser, so they’d almost
always just be pulled back off their original heap on the next iteration. When a
candidate heap drops below a certain size (default = 60% of original size), it is
liquidated, and all triples placed in the candidate pool.

6.3. Algorithm overview

At each iteration pa, NINJA follows this process, tracking qmin at each step:

1. Scan all candidates in the pool, keeping the one with smallest qij.

2. Sweep through the candidate heap chain, for each heap removing triples until
reaching the bound (6.4), and placing those triples in the candidate pool.
Possibly liquidate heaps in the chain if they become too empty.

3. Sweep through the bin-pair heaps, for each heap removing triples until
reaching bound (6.1), and placing those triples in the candidate pool.

4. If the size of the candidate pool exceeds threshold, move all candidates into
a new heap, storing qij(pa) for each candidate, and ti(pa)-values and r(pa) for
the heap. Append this heap to the candidate heap chain.

5. Having found the qij with minimum value, merge clusters i and j, update the
bin-pair heaps and the in-memory part of the distance matrix M with entries
for new cluster ij, and possibly write out to the on-disk distance matrix D.
Also occasionally liquidate the candidate heap chain and rebuild the bin-pair
heaps (see Section 6.1.1).

Steps 1 and 2 typically identify a pair with good qij value, because they start
with a set of previously filtered candidates. This improves the efficiency of the
bin-heap search, since the d-filter bound will be more effective if the starting qmin

is close to the true qmin.
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CHAPTER 7

EXPERIMENTAL VERIFICATION OF METHODS FOR SCALING UP
NEIGHBOR-JOINING

To assess the effectiveness of the two-tiered filtering algorithm, it has been
implemented in an application called NINJA. Three variants were used in various
tests in the results shown below. The default variant, NINJA, stores the distance
matrix on disk, and uses both the d-filter described in Section 6.1 and the q-
filter described in Section 6.2, both implemented with external-memory array
heaps [12]. The variant labeled NINJA-d-filter is identical to NINJA, except that
it implements only the d-filter, not the q-filter. The variant labeled NINJA-InMem

also uses only the d-filter, but does so with in-memory data structures - keeping
the distance matrix entirely in memory, and using a binary heap in place of the
external-memory array heap. NINJA-InMem makes it possible to directly assess the
impact of external-memory components of the algorithm. On a machine with 4GB
RAM, NINJA-InMem is only able to compute neighbor-joining trees on inputs of
fewer than about 7000 sequences, due to overhead memory use.

For comparison purposes, we tested two tools that similarly avoid viewing the
entire distance matrix at each iteration, QuickJoin and RapidNJ, and a very fast
implementation of the canonical algorithm, QuickTree. To our knowledge, these
are the fastest available tools that implement exact neighbor-joining. Both of the
former tools are unable to handle inputs of more than 13,000 sequences on a machine
with 4GB of RAM, but an experimental external-memory version of RapidNJ,
called RapidDiskNJ, has been released. A version of RapidDiskNJ downloaded
on 04/24/09 was used as a reference for large inputs. Note that the filter used in
RapidNJ and RapidDiskNJ is almost equivalent to that used in NINJA-d-filter

and NINJA-InMem. This analysis considers only tools that produce exact neighbor-
joining trees. It is worth noting that ClearCut and FastTree, both of which
implement neighbor-joining heuristics, are both faster than NINJA.

QuickTree was implemented in C, QuickJoin and both RapidNJ variants were
implemented in C++, and the NINJA variants were implemented in Java (see
appendix B).

Environment Experiments were run on a bank of 8 identical dedicated systems
running CentOS 4.5 (kernel 2.6.9-55), with 64 bit 2.33 GHz Xeon processors, 4 GB
allocated RAM, and 500 GB 7200 RPM SATA hard drives. NINJA used roughly 60
GB of disk space for the largest inputs. The “real time” output from the standard
time tool was used to measure run time.
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Data Pfam [37] families were used as sample input for the tools. Each protein
domain family was preprocessed to remove duplicate sequences, and all 415 families
with more than 2000 unique sequences were used. Distances calculated with
QuickTree, with Kimura’s correction [65] for multiple substitutions at a locus,
were used as input to all tools.

7.1. Experiments

Effect of filters At each iteration, the canonical algorithm scans all r(r−1)/2 cells
in the distance matrix, where r is the number of remaining clusters. It thus views
Θ(n3) cells (candidates) over the course of building a complete neighbor-joining
tree on n sequences. Figure 7.1 shows the often dramatic reduction in number of
candidates passing the d-filter, relative to this total count of cells. It also highlights
instances where the d-filter is mostly ineffective, and shows that more consistent
success is achieved when the q-filter is used in conjunction with the d-filter. It is
important to note that Figures 7.1, 7.3, and 7.4 are all log-log plots. Thus, the
roughly linear growth observed in all plots corresponds to polynomial growth of
both candidates and run time, with the polynomial exponent visible in the log-log
slope.

Inputs causing bad d-filtration Figure 7.2a shows an example of the kind of
input that makes the d-filter fairly ineffective. It contains large clusters of very
closely related sequences, and a few relatively long branches. Contrast this to the
more evenly-distributed sequences seen in Figure 7.2b, for which the d-filter is quite
effective.

The reason for the computational difficulty of trees like the one in Figure 7.2a is
that the clusters on the very long branches have very large t values relative to the
t values for most clusters, while the clusters for the tree in Figure 7.2b will all have
fairly similar t values. With RapidNJ’s bound, which depends on tmax, d-filtering on
7.2a is immediately inefficient because of this t-value discrepancy. NINJA’s bound
(equation 6.1) starts off relatively tight, but the d-filtering becomes inefficient as the
range of t-values within a bin grows. This can happen dramatically when clusters
along one long branch, which thus begin in a high t-value bin, are merged (with
corresponding relative reduction in t values), while other clusters sharing the same
bin are not merged, and thus retain relatively high t values.

Table 7.2c shows the effect that these differing tree forms have on both number
of viewed candidates and run time. Focus on the results for family Cytochrom B N,
an input with structure like that shown in Figure 7.2a: d-filtering only reduces the
number of candidates by a factor of 10, much less effective filtering than the 10,000-
fold reduction seen in family WD40, an input with structure much like that seen
in Figure 7.2b. Because of the extra overhead of their algorithms, the resulting
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Figure 7.1: Number of candidates viewed during tree-building with and without
filters, for all 415 Pfam alignments with more than 2000 non-duplicate sequences.
Data points are placed on a log-log plot: the slope on such a plot gives the
exponent of growth. The canonical algorithm treats all cells as candidates, and
the corresponding count of unfiltered cells shows the expected slope of 3 for Θ(n3)
number of cells. The d-filter often reduces the number of viewed candidates by
more than 3 orders of magnitude, but is less effective for some inputs. Addition
of the q-filter results in more consistent filtering success across all inputs, and an
observed growth rate in number of viewed cells of roughly O(n2.4).
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(a) Flu M1, 707 sequences. Example of a
topology for which filtering is ineffective.

(b) QRPTase N, 707 sequences. A topology
for which filtering is effective.

Pfam ID

Sequence 

number All cells

d-filter 

only

d+q 

filters QuickTree RapidDiskNJ

NINJA            

d-filter

NINJA          

d+q filters

RuBisCO_large 17,490 9E+11 5E+10 1E+09 64 124 331 25

PPR 18,961 1E+12 2E+08 2E+08 155 20 21 20

Cytochrom_B_N 33,789 6E+12 6E+11 7E+09 539 1,678 6,092 146

WD40 33,327 6E+12 2E+08 2E+08 756 52 121 110

RVT_1 56,822 3E+13 2E+12 1E+10 n/a >18,500 >18,500 717

ABC_tran 53,116 2E+13 2E+08 2E+08 n/a 159 554 530

Run time (minutes)Number candidates

(c) Impact of d- and q-filtering at various input sizes.

Figure 7.2: Trees (a) and (b) are both of 707 sequences, and represent
approximately equal evolutionary distance between the most divergent pair of
sequences. They are mid-point-rooted, and images were created using FigTree

(http://tree.bio.ed.ac.uk/software/figtree/). Pfam datasets with relationships like
those shown in (a), with many closely related sequences and a few relatively long
branches, cause d-filtering to be ineffective. In Table (c), the first of each pair has
topology similar to (a), and shows poor d-filtering; the second has topology similar
to (b), and shows good d-filtering. Run times for RapidNJ and NINJA-d-filter are
very slow when d-filtering is ineffective, but the additional q-filter used by NINJA

results in much better filtering, and therefore improves runtimes even for these hard
cases. On a system with 4GB RAM, QuickTree crashes on all Pfam families with
more than 37,000 sequences. RapidDiskNJ and NINJA-d-filter both took longer
than 13 days to compute a tree for RVT 1.
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run times for both RapidDiskNJ and NINJA-d-filter are much worse than that of
QuickTree. By applying the q-filter, NINJA achieves a further 100-fold reduction
in candidates viewed for Cytochrom B N, along with a large reduction in run time.

Comparison to other tools Figures 7.3 and 7.4 compare NINJA variants to other
neighbor-joining tools. They focus on inputs of more than 2000 sequences, since
smaller inputs are solved by the canonical algorithm (implemented in QuickTree)
in under 10 seconds.

The orders-of-magnitude reduction in viewed candidates seen in Figure 7.1
does not translate to a similar reduction in run-time because the underlying data
structures required to gain this filtering advantage incur a great deal of overhead
relative to the simple scanning of a matrix. In addition, the large-scale applications
(NINJA and RapidDiskNJ) incur a constant-factor overhead from disk accesses.
Those factors are mitigated by using algorithms with good disk-paging behavior,
but are nevertheless present.

Figure 7.3 shows run times for a random sample of 113 medium-sized (2000-7000
sequences) inputs from Pfam. A sample is shown, rather than the entire dataset, to
improve visibility of the chart, and agrees with trends for the full set of similarly-
sized inputs. Note that QuickTree’s run time grows with a slope of 2.9 on a log-log
plot, essentially what is expected of a Θ(n3) algorithm. QuickJoin and RapidNJ

are in-memory versions of competitor algorithms - both show a reduction in run-
time, and a growth rate that is slightly more than quadratic. This is in agreement
with results from [99]. Results for NINJA-InMem and NINJA are presented to show
their relative performance to each other and the other tools. Both show a roughly
quadratic run-time growth on this data set. NINJA-InMem is slightly faster than the
fastest other tool, RapidNJ. Since the two tools use essentially the same bounding
method for their d-filter methods, this difference is likely explained by the tighter
bounds generated by the bin-pair approach of NINJA.

Figure 7.4 shows run times for all inputs from Pfam with more than 7000
sequences. Results are given for the variant of each tool that best handles these large
inputs: QuickTree, RapidDiskNJ, and NINJA. Only NINJA successfully computed
neighbor-joining trees for all inputs; QuickTree crashed on all inputs with more
than 37,000 sequences, while RapidDiskNJ failed to complete within 13 days on
the two largest inputs. QuickTree continues to exhibit the expected slope (3.0) on
a log-log plot for a O(n3) algorithm. Interestingly, both RapidDiskNJ and NINJA

also show a similar cubic slope for these larger inputs, in conflict with the lower
rate of growth observed for smaller inputs in Figure 7.3 and [99]. Inspection of the
data suggests that this is due to an increased frequency in these larger datasets of
the sort of difficult inputs characterized by Figure 7.2a. Note that the number of
viewed candidates was observed in Figure 7.1 as growing with a power of 2.4. The
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Figure 7.3: Performance of NINJA and NINJA-InMem compared to that of
QuickTree, QuickJoin, and RapidNJ on a random sample of 113 medium-sized
(2000 to 7000 sequences) Pfam inputs.

logarithmic overhead of heap data structures is responsible for the observation that
run time grows faster than the number of candidates.

While the inputs from Pfam are large, the largest contains fewer than 60,000
unique sequences. To assess NINJA’s ability to build trees on truly large
datasets, the GreenGenes collection of 218,348 16S ribosomal RNAs was used as
input (http://www.microbesonline.org/fasttree/downloads/Large16S.tar.gz). On
a system with the same specs as earlier, but with 12GB allocated RAM, NINJA
computed the tree in 134 hours (5.6 days). Interestingly, this represents a roughly
quadratic growth in run time over the 10 hours required to build a tree for almost
60,000 sequences. It is estimated that QuickTree would take more than 80 days
to compute the same tree, if a machine with sufficient memory (more than 500GB
RAM) were available.
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Figure 7.4: Performance of NINJA compared to that of QuickTree and RapidDiskNJ

on all large (7000 to 60,000 sequences) Pfam inputs. (1) On a system with
4GB RAM, QuickTree crashes on inputs with more than 37,000 sequences. (2)
RapidDiskNJ failed to complete within 13 days for the two largest inputs; the
uncertain times-to-completion are represented with the arrowed circles in the upper
right corner. The slope for RapidDiskNJ, which shows that its run time is growing
faster than n3, does not include these two points.
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7.2. Discussion

We have presented a new tool, NINJA, that builds a tree under the traditional
optimization criteria of neighbor-joining, with the associated guarantee of statistical
consistency and optimal edge radius. NINJA speeds up neighbor-joining by
employing a two-tiered filtering regime, which greatly reduces the number of viewed
candidates in each iteration relative to the complete scan of the distance matrix that
is employed in the canonical algorithm. NINJA also overcomes memory constraints
seen in earlier filtering-based work by incorporating external-memory-efficient data
structures into the algorithm, specifically the external memory array heap [12] and
simple on-disk storage of the distance matrix. The latter structure can be trivially
co-opted by any neighbor-joining tool to overcome memory constraints due to the
size of the distance matrix.

Run time growth rate is somewhat unclear. The results of Figure 7.4 suggest
a cubic rate of growth, which represents no asymptotic improvement over the
canonical algorithm. However, the single huge 16S RNA tree does not follow this
trend. Further examination, perhaps on simulated alignments, might clear this up.
In any case, NINJA represents a major advance in the scalability of neighbor-joining,
and makes it feasible to construct trees for inputs with well over 100,000 sequences
in a matter of a small number of days of computation on a modern desktop.

The accuracy of NINJA is not discussed in this paper, as accuracy of any
exact neighbor-joining tool is expected to be the same. That said, there is
a clear dependency on correctly estimated distances, motivating more attention
to this topic. BioNJ [39] implements a method of minimizing the variance of
distances as the neighbor-joining tree is formed, with demonstrated accuracy
benefits relative to canonical neighbor-joining; it is a straightforward exercise to
incorporate these methods into NINJAś algorithm. In addition, a number of methods
have been suggested for improving distance estimation, including Bayesian inference
of evolutionary rates [82], and simultaneous estimation of all pairwise distances
under a likelihood framework [108].
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CHAPTER 8

FUTURE WORK AND CONCLUSIONS

The focus of this dissertation has been spread over two classic, and closely
related, topics in molecular sequence analysis: multiple sequence alignment and
phylogeny inference. I have explored a variety of approaches applied to the
various stages of the form-and-polish heuristic for aligning multiple sequences, and
described an approach that dramatically increases the speed and scalability of the
neighbor-joining method for phylogeny inference.

Next I summarize my work and end by suggesting a few related research
questions.

8.1. Summary

Part 1 (Chapters 2 through 4) of this work investigated methods for the phases
of the fom-and-polish method of sequence alignment, while Part 2 (Chapters 6
through 8) described a new algorithm for the neighbor-joining method of phylogeny
inference.

Chapter 2 introduced the standard form-and-polish heuristic for multiple
sequence alignment, delineating what we call the stages of that method. A profusion
of approaches have been applied in the literature to those various stages, with little
discussion of their relative efficacy, and that chapter presented a careful study of
methods for each stage, identifying best-of-breed methods for each. The methods
investigated included both established and novel ones, including new methods
for estimating distances, weighting pairs of sequences, polishing the alignment,
employing alignment consistency, and choosing parameters. We showed that
the largest gains in quality come from new methods for estimating distances by
normalized alignment costs, and polishing by 3-cuts on the merge tree. We also
found that the exact gap-count algorithm for aligning alignments [63] yields only
a minor improvement over an approximate merging heuristic. The outcome of
this investigation is an alignment tool called Opal which, with a careful choice of
methods for each stage, achieves the same accuracy as state-of-the-art tools like
ProbCons and MAFFT that in addition use various forms of consistency.

Chapter 3 presented details of a new method for assigning weights to pairs of
sequences. The purpose of devising sequence pair weights is to reduce the undue
influence of overrepresented groups on the final outcome of an alignment; without
weighting, the sum-of-pairs scoring function may lead to small improvements to
the quality of alignments involving overrepresented groups while greatly reducing
the quality of alignments involving underrepresented groups. This new method
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avoids anomalous behavior exhibited by two other standard methods. Also, despite
conflicting results in the literature, we found that the tested methods of pair-
weighting provided no significant benefit to alignment accuracy across benchmarks
(though our new method gave encouraging results on a small dataset expected to
suffer from overrepresented groups).

Chapter 4 gave details of a new method for using alignment consistency to avoid
the errors that often occur in the early stages of the progressive alignment method.
The approach depends on modifying the function used to score an alignment
generated at a node of the alignment merge tree. The function is modified in a
way that reflects the support given for particular alignment features in a pair of
sequences A andB by other sequences C. Our results show that our new consistency
model works well, but does not provide accuracy gains when used in conjunction
with polishing, because of conflicts between the local application of consistency-
based modified costs and polishing based on un-modified costs.

The canonical algorithm for neighbor-joining was given in Chapter 5, and
Chapter 6 developed a new algorithm that finds a exact neighbor-joining tree in
much less time, while overcoming previous memory-requirements. The method
depends on a two-tiered filtering process, which dramatically restricts the number
of distance values that are viewed at each iteration of the neighbor-joining
method. The filters depend on external-memory-efficient priority queues, which,
in conjunction with efficient on-disk storage of the distance matrix, allow the
algorithm to handle inputs of effectively unlimited size (bounded only by disk size).
Chapter 7 presents the results of experiments showing that an implementation of
this algorithm reduces run time by roughly an order of magnitude on benchmark
protein alignments. Specifically, the implementation is able to compute a tree for
over 200,000 sequences in less than 6 days, while the canonical algorithm is predicted
to take more than 80 days if a machine with sufficient RAM (roughly 500GB) were
available.

8.2. Future directions

The work described here suggests a number of attractive directions of further
research.

Sequence pair weights that permit fast profile alignment

In Section 2.6 and Chapter 3, we described a new method for weighting sequences
pairs to overcome the bias induced by overrepresented groups. While the method
avoids the anomalous behavior of both division- and covariance-weights, and gives
encouraging results on a small sample of alignments likely experiencing overrep-
resented groups, it can not be used by optimized profile alignment subroutines.
It would be of value to modify the weighting method to allow application to fast
profile alignment methods.
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Unbiased measure of alignment accuracy

We noted in Section 2.6 that assessment of sequence pair weighting methods is
inherently difficult, as the unweighted recovery measure is itself biased. Devising
an unbiased recovery measure that takes overrepresentation into account appears
to be a challenging but valuable challenge.

Alignment parameter advisor

Our experiments (Section 2.9) with an oracle for choosing alignment parameter
values suggest that large gains in recovery may be possible by an input-dependent
choice of parameters. We reported modest success with both our naive Bayes
classifier and core-column-count advisors, but a great deal of room for advancement
remains. One interesting direction to take this work is into the realm of probabilistic
alignment (such as ProbCons). A full-blown expectation-maximization approach
would be too slow in practice, but an advisor that selects from a finite number of
candidate parameterizations might offer improved average alignment quality.

Local alignments in suboptimal-alignment-based consistency

Much of the success of the consistency methods of T-Coffee and MAFFT comes from
their inclusion of local alignment information into the consistency framework. In
both tools, if local alignment support is removed from the consistency modification
method, accuracy values are several percent worse (result not shown). ProbCons

and Opal do not incorporate local alignments, but perform very well because of
their use of suboptimal alignments in estimating support for alignment features.
Merging the use of local alignments and posterior alignment probabilities seems
like a natural step in the advancement of consistency-based sequence alignment.

Speeding up suboptimality-based consistency to permit polishing

Chapter 4 showed that polishing and consistency failed to work well together in
the scheme tested in Opal, because polishing using a different scoring scheme
than consistency, altering the alignment in ways that eliminated the gains made
by consistency. Consistency-modifed costs weren’t used in that scheme because
computing those costs was too slow to be used on more than tens of sequences.
Algorithm engineering to substantially speed up suboptimality-based consistency
might allow it to be applied along the full tree, and in conjunction with polishing.
Results in MAFFT and ProbCons suggest that this will produce improved alignment
accuracy.
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Probabilistic consistency with posterior probabilities on gaps

The probabilistic consistency method of ProbCons depends on posterior probabil-
ities for only substitutions, but there is no reason posteriors can’t be computed
for other transitions in a pair-HMM. By computing these posteriors, and applying
the constrained subpaths in Chapter 4 and appendix A, it may be possible to gain
improved results from the probabilistic consistency framework.

Faster methods for optimizing branch length for minimum evolution

The minimum evolution (ME) framework (described in Chapter 5) assigns edge
lengths to a tree that minimize the squared difference between observed pairwise
sequence distances and those induced by the tree. While a fair bit of work has gone
into developing fast methods for computing least-squares edge lengths [14, 68],
there may be room for improvement. An algorithm is developed [14] for computing
ordinary least squares (OLS) in O(k2) time for k leaves, but other variants WLS
and GLS (which weight the components of the sun-of-squares based on variance
and covariance of distance estimates) run in time O(k3) and O(k4) respectively.
Speeding up WLS and GLS branch length computation may be value since it
appears that ME local search may improve phylogeny recovery, relative to an initial
neighbor-joining tree (Morgan Price, personal communication).

Sequence pair weighting applied to WLS branch lengths

Desper and Gascuel have presented very good phylogeny inference accuracy in
results based on a variant of minimum evolution called balanced minimum evolution
(BME) [22, 23]. At its heart, the approach depends on a computation of the
average distance between two subtrees in which, for two subtrees A and B, where
B = B1

⋃
B2, the average distance between A and B is defined recursively, in the

general case being

D(A,B) =
1

2
(D(A,B1) +D(A,B2)) .

The result is to avoid undue influence on weights by overrepresented groups. The
equation is dependent only on topology, and is completely ignorant of branch
lengths. As was shown in Chapter 3, specifically in Figure 3.7, identical topologies
can correspond to wildly different levels of sequence independence. Replacing the
topology-only equation with one based on our sequence weighting scheme might
result in an improvement in the accuracy of phylogenies computed in the BME
framework.

Clearly there are many potentially fruitful directions in which the work of this
dissertation can be extended. I look forward to exploring them.
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APPENDIX A

CONSISTENCY GRAPHS

In this appendix, an exhaustive listing is given of the sub-paths in alignment
graphs for (A ∼ C) and (B ∼ C) that are consistent with each feature in
the alignment graph of (A ∼ B) (see Figure 4.1). This appendix extends the
description in Section 4.2, and agrees with that definition of consistency, in that
it lists alignment subpaths that constrain particular features in the alignment of
sequences A and B.

A.0.1. Subpath pairs consistent with substitution

Only one subpath pair is consistent with a substitution column (ai ∼ bj)
(Figure 4.1a). That subpath pair is shown in Figure 4.2, and given again here.
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Figure A.1: Alignment subpaths of A ∼ C and B ∼ C that are consistent with
(ai ∼ bj). The alignment that agrees with these subpaths is:

ai

· · · ch · · ·
bj
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A.0.2. Subpath pairs consistent with gap extension

Figures A.2 through A.5 present four subpath pairs that are consistent with ai

extending a gap between bj and bj+1. This is a vertical edge in the pairwise
alignment graph of (A ∼ B) (Figure 4.1b). Creating subpath pairs for horizontal
gap extension is a trivial matter of flipping the graphs on a diagonal axis.
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Figure A.2: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
ai extending a gap between bj and bj+1. The alignment that agrees with these
subpaths is:

◦ ai

· · · ◦ ch · · ·
bj −

(where ◦ represents freedom to either include or not include character from the
associated sequence )
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Figure A.3: Alignment subpaths of A ∼ C and B ∼ C that are consistent with
ai extending a gap between bj and bj+1. The alignment that agrees with these
subpaths is:

◦ ai ◦
· · · ch − ch+1 · · ·

◦ ◦
↖ ↑ ↑ ↗

bj bj+1

The arrows indicate that the subpaths correspond to alignments of B with C such
that bi aligns either with or before ch, and bi+1 aligns either with or after ch+1.
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Figure A.4: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
ai extending a terminal gap before the first character of B. The alignment that
agrees with these subpaths is:

ai ◦
· · · − · · · c1 · · ·

◦
↑ ↗
b1

The arrows indicate that the subpaths correspond to alignments of B with C such
that b1 aligns either with or after c1, and c1 aligns after ai.
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Figure A.5: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
ai extending a terminal gap after the last character of B. The alignment that agrees
with these subpaths is:

◦ ai

· · · cp · · · − · · ·
◦

↖ ↑
bn

The arrows indicate that the subpaths correspond to alignments of B with C such
that bn aligns either with or before cp, and cp aligns before ai.
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A.0.3. Subpath pairs consistent with gap-open and gap-close.

Figures A.6 through A.13 present eight subpath pairs that are consistent with ai

opening a gap immediately after bj. This is a vertical gap open in the pairwise
alignment graph of (A ∼ B). Figures A.14 through A.21 presnt another eight
subpath pairs that are consistent with vertical gap closure. Creating subpath pairs
for horizontal gap boundaries is a trivial matter of flipping the graphs on a diagonal
axis.
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Figure A.6: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
ai opening a gap immediately after bj (general case). The alignment that agrees
with these subpaths is:

◦ ai

· · · ch−1 ch · · ·
bj −
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Figure A.7: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
ai opening a gap immediately after bj (case: i > 1, 0 < j < n, 0 < h < p). The
alignment that agrees with these subpaths is:

ai−1 ai

· · · ch − · · · ch+1 · · ·
bj ◦

↑ ↗
bj+1

The arrows indicate that the subpaths correspond to alignments of B with C such
that bj+1 aligns either with or after ch+1.
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Figure A.8: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent
with a1 opening a gap before the first character of B (case: j = 0, i = 1). The
alignment that agrees with these subpaths is:

ai

· · · ch · · · ◦ · · ·
b1
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Figure A.9: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
ai opening a gap immediately after bn (case: j = n, 0 < h ≤ p). The alignment
that agrees with these subpaths is:

ai−1 ai

· · · ch − · · ·
bn
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Figure A.10: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent
with a1 opening a gap immediately after bn (case: i = 1, j = n, 0 < h ≤ p). The
alignment that agrees with these subpaths is:

a1

· · · ch − · · ·
bn
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Figure A.11: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent
with a1 opening a gap immediately after bj (case: i = 1, j > 0, 0 < h < p). The
alignment that agrees with these subpaths is:

a1

· · · ch − · · · ch+1 · · ·
bj ◦

↑ ↗
bj+1

The arrows indicate that the subpaths correspond to alignments of B with C such
that bj+1 aligns either with or after ch+1.
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Figure A.12: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
a1 opening a gap before the first character of B (case: i = 1, j = 0, 0 ≤ h < p).
The alignment that agrees with these subpaths is:

a1

· · · ch − · · · ch+1 · · ·
◦
↑ ↗
b1

The arrows indicate that the subpaths correspond to alignments of B with C such
that b1 aligns either with or after ch+1.
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Figure A.13: Complex alignment subpaths of (A ∼ C) and (B ∼ C) that are
consistent with ai opening a gap between bj and bj+1. The alignment that agrees
with these subpaths is:

◦ − − − ai

· · · ch′ · · · ch · · ·
bj − − − −

In this complex graph pair, ai is the first character of A to appear after a gap that
goes back to at least ch′ , and bj is the last character of B to appear before a gap
that goes until at least ch. This special case is valid only for h′ ≤ h − 2. See text
for proof that an optimal pair (h′, h) can be found in linear time for fixed i and j.
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Figure A.14: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
ai closing a gap between bj and bj+1 (general case). The alignment that agrees
with these subpaths is:

ai

· · · ◦ · · · ch ch+1 · · ·
bj − bj+1
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Figure A.15: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent
with ai closing a gap between bj and bj+1 (case: i > 1, j > 0, 0 < h < p). The
alignment that agrees with these subpaths is:

ai ai+1

· · · ch · · · − ch+1 · · ·
◦ bj+1

↖ ↑
bj

The arrows indicate that the subpaths correspond to alignments of B with C such
that bj aligns either with or before ch.
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Figure A.16: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
am closing a terminal gap after the last character of B (case: i = m, j = n). The
alignment that agrees with these subpaths is:

am

· · · ◦ · · · ch · · ·
bn
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Figure A.17: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent
with ai closing a terminal gap before b1 (case: j = 0, 0 < i < m, 0 ≤ h < p). The
alignment that agrees with these subpaths is:

ai ai+1

· · · − ch+1 · · ·
b1
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Figure A.18: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent
with am closing a terminal gap before the first character of B (case: i = m, j = 0,
0 ≤ h < p). The alignment that agrees with these subpaths is:

am

· · · − ch+1 · · ·
b1
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Figure A.19: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
am closing a gap between bj and bj+1 (case: i = m, 0 < j < n, 0 < h < p). The
alignment that agrees with these subpaths is:

am

· · · ch · · · − ch+1 · · ·
◦ bj+1

↖ ↑
bj

The arrows indicate that the subpaths correspond to alignments of B with C such
that bj aligns either with or before ch.
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Figure A.20: Alignment subpaths of (A ∼ C) and (B ∼ C) that are consistent with
am closing a terminal gap after bn (case: i = m, j = n, 0 < h ≤ p). The alignment
that agrees with these subpaths is:

am

· · · ch · · · − · · ·
◦

↖ ↑
bn

The arrows indicate that the subpaths correspond to alignments of B with C such
that bn aligns either with or before ch.
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Figure A.21: Complex alignment subpaths of (A ∼ C) and (B ∼ C) that are
consistent with ai closing a gap between bj and bj+1. The alignment that agrees
with these subpaths is:

ai − − − − ◦
· · · ch′ · · · ch−1 ch · · ·

− − − − − bj

In this complex graph pair, ai is the last character of A to appear before a gap
starting at ch′+1 and going to ch−1, and bj is the first character of B to appear after
a gap going back to at least ch′ . This special case is valid only for that h′ ≤ h− 2.
See text for proof that an optimal pair (h′, h) can be found in linear time for fixed
i and j.
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The reader should remember that these graphs are used in the computation of
modified costs by finding, for each position-pair (i, j), the values of h′ and h that
result in minimum suboptimality. Most of the subpaths above involve only a single
value, h, so scanning for the best h requires linear time for each (i, j). This leads
to O(n3) run time for computing suboptimality modifiers from one sequence C for
alignment (A ∼ B), when all three sequences have length n. However, two of the
subpaths (Figures A.13 and A.21) involve a pair of values, h′ and h. For a fixed
pair (i, j), naively finding the pair (h′, h) that gives smallest suboptimality would
require quadratic time, leading to an overall O(n4) algorithm.

Fortunately, it is possible to find the optimal pair (h′, h) for a fixed (i, j) in
a single linear-time scan through C. This is achieved by keeping two pointers to
positions in sequence C. Call these the leading and trailing pointers, which point
to positions f and g, and serve as candidates for h′ and h respectively. The leading
pointer is advanced one position at a time, and the trailing pointer makes occasional
(possibly multi-step) advances. When the leading pointer reaches the end of C, the
process is complete; this is a linear process since the leading pointer moves one step
at a time and neither pointer ever backtracks.

We now provide details to show how the optimal pair (h′, h) is found. The
approach will be described in the context of the average suboptimality described
in 4.3. In that context, the pair of constrained alignments with lowest cost will
also be the pair with lowest suboptimality. Modifying this approach to use the
maximum suboptimality criterion is straightforward.

For a fixed i and j, we will maintain the invariant that, for a pointer value g, f
is the position in C that results in the lowest average cost of constrained alignments
(A ∼ C) and (B ∼ C) among values ≤ g− 2. Initialize f = 1 and g = 3; f satisfies
the above condition trivially. In the general case, we seek to advance g to g′, and
find the value f ′ that gives lowest cost among all values ≤ g′ − 2. It will be shown
(below) that for g′ = g + 1, f gives lowest cost among positions ≤ g′ − 3. Thus,
for g′, the optimal f ′ will be either f or g − 2. This means that a fixed amount of
work is performed for each advancement of the leading pointer g. For fixed i and
j, when all values g (each with corresponding f) have been tested, the pair (f, g)
with lowest cost gives the (h′, h) with lowest suboptimality. This is a linear scan
per (i, j) pair, resulting in cubic run time to compute suboptimalities over all (i, j).

Theorem A.1 (Linear time to compute best (h′, h) pair for suboptimality graph in
Figure A.13). For fixed position g, let f be the position giving lowest cost constrained
alignments (A ∼ C) and (B ∼ C) among values ≤ g − 2. Then for position
g′ = g + 1, f is the position giving lowest constrained cost among values ≤ g′ − 3.

Proof. For position pair (f, g), the two parts of the path-pair in Figure A.13 can
be decomposed into subpaths that will be used in this proof. Specifically, the cost
of the optimal alignment (A ∼ C) forced to go through positions f and g can be
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broken into the sum L + M + N + P , as shown in Figure A.22. The cost for the
similar alignment for (B ∼ C) can be broken into into the sum W +X +Y +Z, as
in Figure A.24. Similar decompositions can be made for position pair (f, g′), as in
Figures A.23 and A.25.

Let C(f, g) be the sum of (A ∼ C) and (B ∼ C) costs going through f and g
of Figures A.22 and A.24, and let C(f, g′) be the similar sum going through f and
g′. It is clear that

C(f, g′) = C(f, g)−N − P − Z +N ′ + P ′ + Z ′ + 2λ

for any f ≤ g− 2. Thus, when g′ replaces g, all positions f ≤ g− 2 will be subject
to constant change in cost, so the relative order of costs for positions ≤ g − 2
is unchanged when g is replaced by g′. This ensures that the f ≤ g − 2 that
gives lowest cost alignments for subpaths ending at g will also give the lowest cost
alignments for subpaths ending at g′ = g + 1, among values ≤ g′ − 3.
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Figure A.22: Decomposing the (A ∼ C) part of figure A.13 (1). Used in proof of
linear-time computation of optimal (f, g) pair.
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Figure A.23: Decomposing the (A ∼ C) part of figure A.13 (1). Used in proof of
linear-time computation of optimal (f, g) pair.
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Figure A.24: Decomposing the (B ∼ C) part of figure A.13 (1). Used in proof of
linear-time computation of optimal (f, g) pair.
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Figure A.25: Decomposing the (B ∼ C) part of figure A.13 (1). Used in proof of
linear-time computation of optimal (f, g) pair.
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APPENDIX B

ON JAVA VERSUS C++ FOR SCIENTIFIC COMPUTING

In this appendix, I briefly describe my personal experience with developing
complex scientific applications in Java. I start by giving my motivations for moving
from C++ to Java in the first place. I then give a sense of how Java has performed
in my two scientific computing applications, and reach the conclusion that (1) Java
is an excellent language for prototyping scientific algorithms and gives acceptable
speed if used carefully, but (2) C++ appears to give better (faster) performance,
especially in I/O-intensive applications, and is thus preferable for polished software
release.

Based on personal observation, the implementation languages of choice in
computational biology appear to be C and C++. Java seems to have much less
penetrance in the market of serious scientific computing, likely because it is viewed
as being too slow or restrictive for such use.

The original implementation of Opal [115] was in C, and depended on an
existing C implementation of the algorithms mentioned in Section 2.5 for aligning
alignments [63] . As I began development related to the consistency methods
described in Chapter 4, it was clear that a great deal of refactoring of code would be
required to incorporate the modified cost schemes, and the flexibility of an object-
oriented programming language would make it much easier to test the wide range
of ideas we had in mind. Because I preferred the ease of development, debugging,
and portability that Java offer, I decided to investigate reimplementing Opal with
Java. The results of Bull et al. [15] and a variety of benchmark tests posted
to the web (e.g. http://www.idiom.com/∼zilla/Computer/javaCbenchmark.html
and http://kano.net/javabench/) were compelling enough to convince me to
reimplement the code for aligning alignments (AlignAlign) in Java to compare
performance.

AlignAlign is an interesting test case, in that the C implementation requires a
fairly complex memory pool management scheme in order to efficiently deal with
creating and discarding the shapes described in Section 4.5. It is also likely an
ideal candidate for porting to Java, since input files can be handled much more
easily with Java’s regular expression engine than with C, and its core computation
effectively consists of a big sweep through a 2-dimensional array. In the Java
implementation, I was able to do away with pool management, leaving the job
to the Java virtual machine (JVM) garbage collector. With otherwise essentially
identical algorithms, the Java implementation ran about 10% slower than a heavily
optimized C implementation, on average over a wide range of inputs and several
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computers. It should be noted that this required careful avoidance of creating
unnecessary objects inside core loops of the program, as object creation in Java is
slow. It seemed worthwhile to pay a 10% performance penalty for improved ease of
implementation and debugging. A side benefit of implementing in pure Java is that
it was a simple matter to plug Opal into Mesquite (http://mesquiteproject.org), a
well-regarded software suite for evolutionary biology.

NINJA was also developed in Java, and requires quite a bit of low-level disk-
I/O code. In this case, it appears that a C implementation might provide a
substantial speed improvement. NINJA is roughly as fast as RapidNJ (written in
C++) on large inputs of more than 1000 sequences, but RapidNJ is much faster for
small inputs. In fact, on inputs of a few hundred sequences RapidNJ completes in
less time than NINJA requires just to read in the quadratic-sized distance matrix,
despite significant effort invested in optimizing NINJA’s disk-reading functions. This
suggests that NINJA’s success on larger inputs is due to algorithmic success, and
that porting NINJA to C might result in a modest speed improvement.

In addition to the slow disk-I/O in java, other issues have come to light that
suggest limitations to the value of Java in scientific computing. First, on a 32-bit
machine, JVMs will allow allocation of only 2GB RAM, even if more is available
on the machine; this, for example, may not be sufficient to store the dynamic
programming tables for aligning very long sequences. Second, even on 64-bit
machines, memory allocation appears to be a problem on machines with huge
RAM; Morgan Price (pers. comm.) reports that his JVM crashed repeatedly when
attempting to allocate more than 60GB on a machine that has 128GB available
- this was not a NINJA error. In addition, Java appears to be prone to dropping
buffered data when processing data from a Unix pipe, though I’ve not seen this
documented elsewhere. A final problem is that the portability of Java applications
depends on the availability of a JVM; while appropriate JVMs are available for
download, end users may find themselves unable to install the JVM on a server over
which they have no control. Furthermore, some more recent benchmarking results
released to the web have been less supportive of Java’s asserted near-equality to
the C variants (e.g. http://www.stefankrause.net/wp/?p=9)

Having developed two serious scientific computing tools in Java, I believe that it
is an excellent test-bed for algorithms, providing a relatively simple programming
environment with a reasonable speed. However, any tool that is likely to be used
heavily by the public, and for which a premium will be placed on performance,
should probably be ported to C++ in the end. This should be a fairly simple port,
given the similarities of the languages.
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