
Large-scale neighbor-joining with NINJA

Travis J. Wheeler

twheeler@cs.arizona.edu

Department of Computer Science
The University of Arizona, Tucson AZ 85721, USA

Abstract Neighbor-joining is a well-established hierarchical clustering algorithm for
inferring phylogenies. It begins with observed distances between pairs of sequences, and
clustering order depends on a metric related to those distances. The canonical algorithm
requires O(n3) time and O(n2) space for n sequences, which precludes application to
very large sequence families, e.g. those containing 100,000 sequences. Datasets of this
size are available today, and such phylogenies will play an increasingly important role
in comparative genomics studies. Recent algorithmic advances have greatly sped up
neighbor-joining for inputs of thousands of sequences, but are limited to fewer than
13,000 sequences on a system with 4GB RAM. In this paper, I describe an algorithm
that speeds up neighbor-joining by dramatically reducing the number of distance values
that are viewed in each iteration of the clustering procedure, while still computing a
correct neighbor-joining tree. This algorithm can scale to inputs larger than 100,000
sequences because of external-memory-efficient data structures. A free implementation
may by obtained from http://nimbletwist.com/software/ninja.
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1 Introduction

The neighbor-joining (NJ) method of Saitou and Nei [1] is a widely-used method for constructing
phylogenetic trees, owing its popularity to good speed, generally good accuracy [2], and proven
statistical consistency (informally: NJ reconstructs the correct tree given a sufficiently long
sequence alignment) [3–5].

NJ is a hierarchical clustering algorithm. It begins with a distance matrix, where dij is the
observed distance between clusters i and j, and initially each of the n input sequences forms
its own cluster. NJ repeatedly joins a pair of clusters that are closest under a measure, qij , that
is related to the dij values. The canonical algorithm [6] finds the minimum qij at each iteration
by scanning through the entire current distance matrix, requiring O(r2) work per iteration,
where r is the number of remaining clusters. The result is a Θ(n3) run time, using Θ(n2) space.
Thus, while NJ is quite fast for n in the hundreds or thousands, both time and space balloon
for inputs of tens of thousands of sequences.

As a frame of reference, there are 8 families in Pfam [7] containing more than 50,000
sequences, and 3 families in Rfam [8] with more than 100,000 sequences, and since the number
of sequences in genbank is growing exponentially [9], these numbers will certainly increase.
Phylogenies of such size are applicable, for example, to large-scale questions in comparative
genomics (e.g. [10]).

Related work QuickTree [11] is a very efficient implementation of the canonical NJ algorithm.
Due to low data-structure overhead, it is able to compute trees up to nearly 40,000 sequences
before running out of memory on a 4GB system. QuickJoin [12, 13], RapidNJ [14], and the



bucket-based method of [15] all produce correct NJ trees, reducing run time by finding the
globally smallest qij without looking at the entire matrix in each iteration. While all methods
still suffer from worst-case running time of O(n3), they offer substantial speed improvements
in practice. Unfortunately, the memory overhead of the employed data structures reduces the
number of sequences for which a tree can be computed (e.g. on a system with 4GB RAM,
RapidNJ scales to 13,000 sequences, and QuickJoin scales to 8000).

The focus of this paper is on exact NJ tools, but I briefly mention other distance-based
methods for completeness. Relaxed [16] and fast [17] neighbor joining are NJ heuristics that
improve speed by choosing the pair to merge from an incomplete subset of all pairs; they do
not guarantee an exact NJ tree in the typical case that pairwise distances are not nearly-additive
(very close to the distances induced by the true tree). Minimum-evolution with NNI offers an
alternate fast approach with good quality and conjectured consistency [19]. An implementation
of the relaxed neighbor joining heuristic, ClearCut [18], is faster than NINJA on very large
inputs, and a recent implementation of a minimum-evolution heuristic with NNI, FastTree [20],
is notable for constructing accurate trees on datasets of the scale discussed here, with speed at
least 10-fold greater than that acheived by NINJA on very large inputs.

Contributions I present NINJA, an implementation of an algorithm in the spirit of QuickJoin
and RapidNJ: it produces a correct NJ phylogeny, and achieves increased speed by restricting
its search for the smallest qij at each iteration to a small portion of the quadratic-sized distance
matrix. The key innovations of NINJA are (1) introduction of a search-space filtering scheme
that is shown to be consistently effective even in the face of difficult inputs, and (2) inclusion of
data structures that efficiently use disk storage as external memory in order to overcome input
size limits.

The result is a statistically consistent phylogeny inference tool that is roughly an order of
magnitude faster than a very fast implementation of the canonical algorthm, QuickTree (for
example, calculating a NJ tree for 60,000 sequences in less than a day on a desktop computer),
and is scalable to hundreds of thousands of sequences.

Overview The next section gives necessary details of the canonical NJ algorithm. Section 3
describes the primary filtering heuristic used to avoid viewing most of the distance matrix
at each iteration, called d-filtering. Section 4 describes a secondary filtering method, called
q-filtering, which is of primary value on the kinds of inputs where d-filtering is ineffective.
Section 5 gives the full algorithm, and finally section 6 analyzes the impact of these methods,
and compares the scalability of NINJA to that of other exact neighbor joining tools.

2 Canonical neighbor-joining

NJ [1, 6] is a hierarchical clustering algorithm. It begins with a distance matrix, D, where dij is
the observed distance between clusters i and j, and initially each sequence forms its own cluster.
NJ forms an unrooted tree by repeatedly joining pairs of clusters until a single cluster remains.
At each iteration, the pair of clusters merged are those that are closest under a transformed
distance measure

qij = (r − 2) dij − ti − tj , (1)

where r is the number of clusters remaining at the time of the merge, and

ti =
∑

k

dik . (2)



When the {i, j} pair with minimum qij is found, D is updated by inactivating both the rows
and columns corresponding to clusters i and j, then adding a new row and column containing
the distances to all remaining clusters for the newly formed cluster ij. The new distance dij|k
between the cluster ij and each other cluster k is

dij|k = (di|k + dj|k − di|j)/2 . (3)

There are n-1 merges, and in the canonical algorithm each iteration takes time O(r2) to scan
all of D. This results in an overall running time of O(n3).

3 Restricting search of the distance matrix

3.1 The d-filter

A valid filter must retain the standard NJ optimization criterion at each iteration: merge a
pair {i, j} with smallest qij . To avoid scanning the entire distance matrix D, the pairs can be
organized in a way that makes it possible to view only a few values before reaching a bound
that ensures that the smallest qij has been found.

To acheive this we use a bound that represents a slight improvement to that used in
RapidNJ [14]. In that work, ({i, j}, dij) triples are grouped into sets, sorted in order of increasing
dij , with one set for each cluster. Thus, when there are r remaining clusters, each cluster i has
a related set Si containing r− 1 triples, storing the distances of i to all other clusters j, sorted
by dij . Then, for each cluster i, Si is scanned in order of increasing dij . The value of qij is
calculated (equation 1) for each visited entry, and kept as qmin if it is the smallest yet seen.

To limit the number of triples viewed in each set, a second value is calculated for each
visited triple, a lower bound on q-values among the unvisited triples in the current set Si:
qbound = (r − 2) dij − ti − tmax, where tmax = maxk{tk}. In a single iteration, tmax is
constant, and for a fixed set Si, ti is constant and the sorted dij values are by construction
non-decreasing. Thus, if qbound ≥ qmin, no unvisited entries in Si can improve qmin, and the
scan is stopped. After this bounded scan of all sets, it is guaranteed that the correct qmin has
been found. This is the approach of RapidNJ.

Improving the d-filter While this method is correct, and provides dramatic speed gains [14],
it can be improved. First, observe that the bound is dependent on tmax, which may be very
loose (see fig. 2a). One way to provide tighter bounds is to abandon the idea of creating one list
per cluster. Instead, the interval (tmin, tmax) is divided into evenly spaced disjoint bins, where
each bin Bx covers the interval [Tmin

x , Tmax
x ). For X bins, then, the size of the interval between

min and max values will be (tmax − tmin)/X (the default number of bins is 30). Each cluster i
is associated with the bin Bx for which Tmin

x ≤ ti < Tmax
x . Adopt the notation that cluster

i’s bin B(i) = x. Note that bins may contain differing numbers of clusters. Then create a set
S{x,y} for each bin-pair {Bx, By}.

Now, instead of placing ({i, j}, dij) triples into per-cluster sets as before, place them in
per-bin-pair sets S{B(i),B(j)}, still sorting triples within a set by increasing dij . To find qmin,
traverse the sets, scanning through each as before, but now calculating the bound based on
current triple ({i, j}, dij), taken from set S{x,y}, as

qbound = (r − 2) dij − Tmax
x − Tmax

y . (4)

This improves the filter because, for an unvisited pair {i′, j′} from the same set S{x,y}, setting
ρ = (r− 2) di′j′ , ρ−Tmax

x −Tmax
y will usually be a tighter bound on qi′j′ than is ρ− ti′ − tmax.



Updating data structures After merging clusters i and j, the rows and columns associated
with those columns are inactivated in D, and a new row and column are added for the merged
cluster ij. Entries in the sets also require update. The new cluster, ij, is associated with the bin
B(ij) = argminx{Tmax

x > tij)}. Triples ({ij, k}, dij|k) for distances to each remaining cluster
are added to the appropriate set, S{B(ij),B(k)}. Triples for the removed clusters i and j are
removed from sets in a lazy fashion: i and j are marked as retired, and when triples involving
either i or j are encountered while scanning sets, they are removed.

While this method provides tighter qbound values than the method of keeping one set per
cluster, these bounds will tend to relatively loosen over time. Before any merges are performed,
the intervals of these sets are non-overlapping, but because the change in tk after a merge may
be different for each cluster k, this non-overlapping property is no longer guaranteed to hold
after a merge is performed. The result is a loosening of the value Tmax

x as a bound for ti for an
arbitrary cluster (i.e. the bound may be greater than (tmax − tmin)/X). The loosening of the
bound grows as iterations pass, though it is still tighter than the per-cluster bound until the
set ranges overlap almost completely.

It may seem appealing to move a cluster to a new bin when that bin could provide a tighter
bound, but doing so would incur substantial work to take all corresponding triples out of the
various bin-pair sets. The strategy taken by NINJA is to occasionally rebuild the sets from
scratch. For a constant K > 1 (the default is K = 2), the sets are rebuilt after r/K merges
have been performed since the last rebuild, where r is the number of clusters remaining at the
time of that prior rebuild. Overall runtime for these set constructions is dominated by the time
of the first construction, O(n2 log n).

3.2 Overcoming memory limits

The size of D is quadratic in the number of sequences, as is the size of the sets of triples described
above. If these structures grow to exceed available RAM, an application may either abort or
store the structures to external storage (i.e. disk). If the pattern of disk access is is random, the
latter will result in frequent paging. The dramatic difference in latency between disk and RAM
access (on the order of 106-fold difference [21]) necessitates I/O-efficient algorithms if external
storage is to be used. I describe methods for efficiently handling both the sets S{x,y} and the
distance matrix.

Bin-pair sets in external memory The set of triples associated with each bin pair set
S{x,y} has been described as a sorted list. In fact, in order to allow fast insertion of triples
for new clusters, such a list would likely be implemented as a data structure such as a binary
search tree. Binary search trees have poor I/O behavior when stored to disk, but could be easily
replaced by a B-tree [22] or B+ tree, which allow for logarithmic number of disk I/Os for both
insertions and reads.

However, since only a small portion of the entries in a set are accessed, the effort of keeping
a totally ordered data structure is unnecessary. A min-heap [23] provides the tools necessary to
scan through increasing dij , with less overhead since it only need keep a partial order. NINJA
implements an external memory array heap [24], keyed on dij . This heap structure can store
more triples than would fill a 1TB hard drive while maintaining a memory footprint smaller
than 2MB, and guarantees an ammortized number of I/O operations for insert and extract-min
operations that is logarthmic in the number of inserted triples. One heap is used for each set
S{x,y}.

Distance matrix in external memory Though the heaps are used to identify the cluster
pair {i, j} to merge, the distance matrix D should still be maintained. After a merge, dij|k is



calculated for every cluster k. From equation 3, we see that we must view dik and djk for every
k, which is more efficiently done by traversing the rows and columns for i and j in D than by
scanning through the heaps.

Since NJ expects D to be symmetric, an efficient way to store D for in-memory use is to
keep only its upper-right triangle: distances for cluster i are spread across row i and column i,
such that all reside in the upper triangle. When a pair of clusters {i, j} is merged, a new row
and column are said to be added, but no additional space is actually required: the distances of
the new cluster ij to all remaining clusters k can be stored in the cells previously belonging to
one of the retired clusters, say i, so dij|k is stored in the cell where dik was stored. Clusters i
and j are noted as retired, and the mapping of cluster ij’s stored location is simple.

However, when D is stored to disk, this approach will lead to poor disk paging behavior,
because values for cluster i are split between row i (which can be accessed efficiently from disk,
with many consecutive values per disk block), and column i (which will be spread across the
disk, with typically one value per disk block). Therefore, a modification is required. For an input
of n sequences, a file F stores a matrix with with 2n columns and n rows. The full initial D
(i.e. both the upper and lower triangles) is stored to F , filling the first n columns for each row.
When a merge is performed, and new distances are calculated, the values dik and djk can be
gathered by sweeping through rows i and j, allowing the number of distance values that fit in a
disk page to be gathered at the cost of a single disk access. The mapping for the storage location
of the new dij|k values will be different for rows and columns: if ij is formed as the result of
the pth merge, then it will map to the row in F where i was stored, but will fill a new column
n+ p− 1. Newly calculated distances are not immediately stored to disk, instead waiting until
enough values have been calculated to allow for efficient disk I/O. Suppose b distance values fit
in a disk block: then dijs for new clusters are appended to a b x n in-memory matrix M until
all b columns of that matrix are full. At that time, each row of M is appended to the same
row in F (requiring one disk I/O per row), and each column is translated and written into the
mapped row in F (requiring up to dn/be I/Os).

4 Candidate handling

Due to the nature of heaps, all viewed ({i, j}, dij) triples are removed from their containing
heaps during the search for qmin; call these the candidates. The d-filter method described in
section 3 dramatically reduces the number of candidates viewed in most cases, but inputs with
relationships like those seen in figure 2a reduce the efficacy of d-filtering, for reasons described
in section 6. Examples of the impact on run time are given in table 2c.

Here I describe a second level of filtering, called the q-filter. It works by sequestering
candidates passing the d-filter, and organizing them in a way that allows a new bound to
limit the number of those candidates that are viewed in each iteration.

q-filter on a candidate heap Let qij(p), r(p), and ti(p) correspond to the values of qij , r,
and ti at a fixed previous iteration p. And let δi(p) = (r− 2)ti(p)− (r(p)− 2)ti. Then it is easy
to show that, for the current iteration,

qij =
(r − 2) qij(p) + δi(p) + δj(p)

r(p)− 2
. (5)

Suppose all candidates on hand at iteration p are stored as ({i, j}, qij(p)) triples in a
candidate set, sorted according to their qij(p) values. Assign the current r and ti as r(p) and
ti(p) for that set. Since relative q-values change by small amounts from one iteration to the
next, the {i, j} pair with the smallest qij at a future iteration is likely to be near the front of



this sorted list. It can be found by initializing qmin to ∞, then scanning candidates in order of
increaing qij(p), updating qmin when an entry with a smaller qij is found.

Let S be the set of all clusters with at least one representative in the candidate set, and
define

∆max(p) := max
i,j ∈ S

i 6=j

{δi(p) + δj(p)} . (6)

Then scanning of this sorted list may be stopped when an element is found with

(r − 2) qij(p) + ∆max(p)
r(p)− 2

≥ qmin . (7)

The candidate set can be large enough to exceed memory for very large inputs, and because
only a partial order is required, NINJA stores the contents of the candidate set in an external
memory heap array, as described for the d-bound bin-pairs in section 3. The heap formed from
such candidates is called a candidate heap.

Candidate heap chain Adding a new candidate to a candidate heap created in a previous
iteration pa (with associated r(pa) and t(pa) values) is problematic: (1) if the candidate involves
a cluster j that was formed after pa, then qij(pa) and tj(pa) are undefined, and (2) even if both
clusters existed before pa, the candidate would need to be stored on the heap with a back-
calculated qij(pa) (and thus looser than necessary bounds) to retain sensible δ-values.

The response in NINJA is to keep a chain of candidate heaps. At initiation, there are no
candidates. In each iteration, newly gathered candidates from the d-filter are placed in a single
candidate pool. When the size of that pool exceeds a threshold (default is 50,000; it should
be fairly large because of the overhead required to form an external memory array heap), a
candidate heap is created and populated with the triples in the pool, and the pool is then
emptied. As more candidates are gathered, they are again stored in the pool, until it exceeds
threshold, at which time a second candidate heap is formed, filled from the candidate pool,
and linked to the first. This is repeated until the tree is complete. This results in a chain of
candidate heaps. The chain is destroyed when bin-pair heaps are rebuilt (section 3.1).

At each iteration, these heaps are scanned for elements with small qij by removing triples
until the bound (7) is reached. Those viewed triples with qij > qmin are placed in the candidate
pool, rather than being returned to their source candidate heap, because the δ-bound usually
gets looser, so they’d almost always just be pulled back off their original heap on the next
iteration. When a candidate heap drops below a certain size (default = 60% of original size),
it is liquidated, and all triples placed in the candidate pool.

5 Algorithm overview

At each iteration pa, NINJA follows this process, tracking qmin at each step:

1. Scan all candidates in the pool, keeping the one with smallest qij .
2. Sweep through the candidate heap chain, for each heap removing triples until reaching the

bound (7), and placing those triples in the candidate pool. Possibly liquidate heaps in the
chain if they become too empty. Steps 1 and 2 typically provide a good bound on the best
qij value for the iteration, because they start with a set of previously filtered candidates.

3. Sweep through the bin-pair heaps, for each heap removing triples until reaching bound (4),
and placing those triples in the candidate pool.

4. If the size of the candidate pool exceeds threshold, move all candidates into a new heap,
storing qij(pa) for each candidate, and ti(pa)-values and r(pa) for the heap. Append this
heap to the candidate heap chain.



5. Having found the qij with minimum value, merge clusters i and j, update the bin-pair
heaps and the in-memory part of the distance matrix M with entries for new cluster ij,
and possibly write out to the on-disk distance matrix D. Also occasionally liquidate the
candidate heap chain and rebuild the bin-pair heaps (see section 3.1).

6 Results and discussion

To assess the effectiveness of the two-tiered filtering algorithm, I have implemented it in an
application called NINJA. Three variants were used in various tests in the results shown below.
The default variant, NINJA, stores the distance matrix on disk, and uses both the d-filter
described in section 3 and the q-filter described in section 4, both implemented with external-
memory array heaps [24]. The variant labeled NINJA-d-filter is identical to NINJA, except that
it implements only the d-filter, not the q-filter. The variant labeled NINJA-InMem also uses only
the d-filter, but does so with in-memory data structures - keeping the distance matrix entirely
in memory, and using a binary heap in place of the external-memory array heap. NINJA-InMem
makes it possible to directly assess the impact of external-memory components of the algorithm.
On a machine with 4GB RAM, it is only able to compute neighbor-joining trees on inputs of
fewer than about 7000 sequences, due to overhead memory use.

For comparison purposes, I tested two tools that similarly avoid viewing the entire distance
matrix at each iteration, QuickJoin and RapidNJ, and a very fast implementation of the
canonical algorithm, QuickTree. To my knowledge, these are the fastest available tools that
implement exact NJ. Both of the former tools are unable to handle inputs of more than 13,000
sequences on a machine with 4GB of RAM, but an experimental external-memory version of
RapidNJ, called RapidDiskNJ, has been released. A verison of RapidDiskNJ downloaded on
04/24/09 was used as a reference for large inputs. Note that the filter used in RapidNJ and
RapidDiskNJ is almost equivalent to that used in NINJA-d-filter and NINJA-InMem. Tree
constructing methods that do not form NJ trees are not included in this analysis due to space
limits. It is worth noting that ClearCut and FastTree are both faster than NINJA.

QuickTree was implemented in C, QuickJoin and both RapidNJ variants were implemented
in C++, and the NINJA variants were implemented in Java.

Environment Experiments were run on a bank of 8 identical dedicated systems running
CentOS 4.5 (kernel 2.6.9-55), with 64 bit 2.33 GHz Xeon processors, 4 GB allocated RAM, and
500 GB 7200 RPM SATA hard drives. NINJA used roughly 60 GB of disk space for the largest
inputs. The “real time” output from the standard time tool was used to measure run time.

Data Pfam [7] families were used as sample input for the tools. Each protein domain family
was preprocessed to remove duplicate sequences, and all 415 families with more than 2000
unique sequences were used. Phylip formatted distance matrices, calculated with QuickTree,
were used as input to all tools.

Effect of filters At each iteration, the canonical algorithm scans through all r(r− 1)/2 cells
in the distance matrix, where r is the number of remaining clusters. It thus views Θ(n3) cells
(candidates) over the course of building a complete NJ tree on n sequences. Figure 1 shows
the often dramatic reduction in number of candidates passing the d-filter, relative to this total
count of cells. It also highlights instances where the d-filter is mostly ineffective, and shows that
more consistent success is achieved when the q-filter is used in conjuction with the d-filter. It is
important to note that figures 1, 3, and 4 are all log-log plots. Thus, the roughly linear growth
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Figure 1 Number of candidates viewed during tree-building with and without filters, for all 415 Pfam
alignments with more than 2000 non-duplicate sequences. Data points are placed on a log-log plot: the
slope on such a plot gives the exponent of growth. The canonical algorithm treats all cells as candidates,
and the coresponding count of unfiltered cells shows the expected slope of 3 for Θ(n3) number of cells.
The d-filter often reduces the number of viewed candidates by more than 3 orders of magnitude, but is
less effective for some inputs. Addition of the q-filter results in more consistent filtering success across
all inputs, and an observed growth rate in number of viewed cells of roughly O(n2.4).

observed in all plots corresponds to polynomial growth of both candidates and run time, with
the polynomial exponent visible in the log-log slope.

Inputs causing bad d-filtration Figure 2a shows an example of the kind of input that
makes the d-filter fairly ineffective. It contains a large clusters of very closely related sequences,
and a few relatively long branches. Contrast this to the more evenly-distributed sequences seen
in figure 2b, for which the d-filter is quite effective.

The reason for the computational difficulty of trees like the one in figure 2a is that the
clusters on the very long branches have very large t values relative to the t values for most
clusters, while the clusters for the tree in figure 2b will all have fairly similar t values. With
RapidNJ’s bound, which depends on tmax, d-filtering on 2a is immediately inefficient because of
this t-value discrepancy. NINJA’s bound (equation 4) starts off relatively tight, but the d-filtering
becomes inefficient as the range of t-values within a bin grows. This can happen dramatically
when clusters along one long branch, which thus begin in a high t-value bin, are merged (with
corresponding relative reduction in t values), while other clusters sharing the same bin are not
merged, and thus retain relatively high t values

Table 2c shows the effect that these differing tree forms have on both number of viewed
candidates and run time. Focus on the results for family Cytochrom B N, an input with
structure like that shown in figure 2a: d-filtering only reduces the number of candidates by
a factor of 10, much less effective filtering than the 10,000-fold reduction seen in family WD40,
an input with structure much like that seen in figure 2b. Because of the extra overhead of their



(a) Flu M1, 707 sequences. Example of a
topology for which filtering is ineffective.

(b) QRPTase N, 707 sequences. A
topology for which filtering is effective.

Pfam ID

Sequence 

number All cells

d-filter 

only

d+q 

filters QuickTree RapidDiskNJ

NINJA            

d-filter

NINJA          

d+q filters

RuBisCO_large 17,490 9E+11 5E+10 1E+09 64 124 331 25

PPR 18,961 1E+12 2E+08 2E+08 155 20 21 20

Cytochrom_B_N 33,789 6E+12 6E+11 7E+09 539 1,678 6,092 146

WD40 33,327 6E+12 2E+08 2E+08 756 52 121 110

RVT_1 56,822 3E+13 2E+12 1E+10 n/a >18,500 >18,500 717

ABC_tran 53,116 2E+13 2E+08 2E+08 n/a 159 554 530

Run time (minutes)Number candidates

(c) Impact of d- and q-filtering at various input sizes.

Figure 2 Trees (a) and (b) are both of 707 sequences, and represent approximately equal evolutionary
distance between the most divergent pair of sequences. They are mid-point-rooted, and images were
created using FigTree (http://tree.bio.ed.ac.uk/software/figtree/). Pfam datasets with relationships
like those shown in (a), with many closely related sequences and a few relatively long branches, cause
d-filtering to be ineffective. In table (c), the first of each pair has topology similar to (a), and shows poor
d-filtering; the second has topology similar to (b), and shows good d-filtering. Run times for RapidNJ

and NINJA-d-filter are very slow when d-filtering is ineffective, but the additional q-filter used by
NINJA results in much better filtering, and therefore improves runtimes even for these hard cases. On
a system with 4GB RAM, QuickTree crashes on all Pfam families with more than 37,000 sequences.
RapidDiskNJ and NINJA-d-filter both took longer than 13 days to compute a tree for RVT 1.

algorithms, the resulting run times for both RapidDiskNJ and NINJA-d-filter are much worse
than that of QuickTree. By applying the q-filter, NINJA achieves a further 100-fold reduction
in candidates viewed for Cytochrom B N, along with a large reduction in run time.

Comparison to other tools Figures 3 and 4 compare NINJA variants to other neighbor-
joining tools. They focus on inputs of more than 2000 sequences, since smaller inputs are
solved by the canonical algorithm (implemented in QuickTree) in under 10 seconds.

The orders-of-magnitude reduction in viewed candidates seen in figure 1 does not translate
to a similar reduction in run-time because the underlying data structures required to gain
this filtering advantage incur a great deal of overhead relative to the simple scanning of a
matrix. In addition, the large-scale applications (NINJA and RapidDiskNJ) incur a constant-
factor overhead from disk accesses. Those factors are mitigated by using algorithms with good
disk-paging behavior, but are nevertheless present.
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Figure 3 Performance of NINJA and NINJA-InMem compared to that of QuickTree, QuickJoin, and
RapidNJ on a random sample of medium-sized (2000 to 7000 sequences) Pfam inputs.
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Figure 4 Performance of NINJA compared to that of QuickTree and RapidDiskNJ on all large (7000
to 60,000 sequences) Pfam inputs. (1) On a system with 4GB RAM, QuickTree crashes on inputs with
more than 37,000 sequences. (2) RapidDiskNJ failed to complete within 13 days for the two largest
inputs; the uncertain times-to-completion are represented with the arrowed cirles in the upper right
corner. The slope for RapidDiskNJ, which shows that its run time is growing faster than n3, does not
include these two points.



Figure 3 shows run times for a random sample of medium-sized (2000-7000 sequences)
inputs from Pfam. A sample is shown, rather than the entire datset, to improve visibility of the
chart, and agrees with trends for the full set of similarly-sized inputs. Note that QuickTree’s
run time grows with a slope of 2.9 on a log-log plot, essentially what is expected of a Θ(n3)
algorithm. QuickJoin and RapidNJ are in-memory versions of competitor algorithms - both
show a reduction in run-time, and a growth rate that is slightly more than quadratic. This is
in agreement with results from [14]. Results for NINJA-InMem and NINJA are presented to show
their relative performance to each other and the other tools. Both show a roughly quadratic run-
time growth on this data set. NINJA-InMem is slightly faster than the fastest other tool, RapidNJ.
Since the two tools use essentially the same bounding method for their d-filter methods, this
difference is likely explained by the tighter bounds generated by the bin-pair approach of NINJA.

Figure 4 shows run times for all inputs from Pfam with more than 7000 sequences. Results are
given for the variant of each tool that best handles these large inputs: QuickTree, RapidDiskNJ,
and NINJA. Only NINJA successfully computed NJ trees for all inputs; QuickTree crashed on all
inputs with more than 37,000 sequences, while RapidDiskNJ failed to complete within 13 days
on the two largest inputs. QuickTree continues to exhibit the expected slope (3.0) on a log-log
plot for a O(n3) algorithm. Interestingly, both RapidDiskNJ and NINJA also show a similar
cubic slope for these larger inputs, in conflict with the lower rate of growth observed for smaller
inputs in figure 3 and [14]. Inspection of the data suggests that this is due to an increased
frequency in these larger datasets of the sort of difficult inputs characterized by figure 2a. Note
that the number of viewed candidates was observed in figure 1 as growing with a power of 2.4.
The logarithmic overhead of heap data structures is responsible for the observation that run
time grows faster than the number of candidates.

7 Conclusion

I have presented a new tool, NINJA, that builds a tree under the traditional optimization
criteria of NJ, with the associated guarantee of statistical consistency. NINJA speeds up NJ by
employing a two-tiered filtering regime, which greatly reduces the number of viewed candidates
in each iteration relative to the complete scan of the distance matrix that is employed in the
canonical algorithm. NINJA also overcomes memory constraints seen in earlier filtering-based
work by incorporating external-memory-efficient data structures into the algorithm, specifically
the external memory array heap [24] and simple on-disk storage of the distance matrix. The
latter structure can be trivially co-opted by any NJ tool to overcome memory constraints due
to the size of the distance matrix.

Though this method greatly speeds up NJ, and makes it possible to construct extremely
large NJ trees, the run time still appears to be in O(n3) despite the dramatic reduction in
viewed candidates. Though this does not represent an improvement in growth rate, the reduced
constant factor makes it feasible to construct trees for inputs with well over 100,000 sequences
in a matter of a small number of days of computation on a modern desktop.

The accuracy of NINJA is not discussed in this paper, as accuracy of any exact NJ tool
is expected to be the same. That said, it is a straightforward exercise to incorporate the
variance-minimization calculations of BioNJ [25], which have been show to improve accuracy
over canonical neighbor-joining, into NINJAś algorithm.
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